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Abstract: This study built a quality prediction model for the drawing process by integrating 

finite element simulation and neural network technology. It meticulously examines the influence of 

pivotal process parameters, including temperature, friction, speed, anvil width ratio (b/h), width-

height ratio (w/h), and reduction ratio (ξ), on the overall drawing process. To facilitate a precise 

characterization of the workpiece's shape post-drawing, four key parameters - fullerring coefficient 

(F), barrelling degree (B), elongation ratio (E), and spread ratio (S) are introduced.The findings reveal 

that while friction and speed exert minimal influence on the drawing process, factors such as 

temperature, b/h, w/h, and especially the ξ, hold significant sway. Notably, a single-step reduction of 

40% emerges as an optimal choice, with caution advised when exceeding a 50% reduction due to the 

potential implications on the internal stress state of the workpiece. A neural network framework is 

employed to analyze collected training data, establishing a high-precision predictive model with a 

post-training correlation coefficient of 0.973. Model robustness is validated through rigorous testing 

across three independent datasets. Building on deformation mechanisms of single-step drawing 

processes, we propose a customized process scheme for variable cross-section forgings. Optimized 

parameters—temperature (900°C), pressing speed (5 mm/s), friction factor (0.3), ξ=40%, and 

w/h=1.2—achieve higher efficiency with critical metrics demonstrating exceptional performance: 

maximum forming force (F=2.84) and minimal barreling distortion (B=5.85%). A single-pass 

strategy is recommended for production simplification, contingent upon maintaining anvil width 

exceeding workpiece elongation. These findings provide a robust technical foundation for enhancing 

production quality and efficiency in variable cross-section forging. 

Keywords: Variable cross-section forgings, Drawing process, Neural network, High-precision 

predictive model, Higher efficiency. 

 
 

1. Introduction 

 

The elongation process of forgings is indeed a considerably complex material rheological 

process, wherein the forming quality is jointly influenced by numerous process parameters. This 

complexity is further exaggerated in the case of intricate forgings with significant axial section 

variations, as the larger fullerring coefficient not only increases the process difficulty but also elevates 

the risk of defect generation. Hence, the introduction of new parameters becomes particularly crucial 

for more accurately depicting the shape changes of components before and after forging. In the 

domain of forging width spread research, Tomlinson and Stringer [1] took the lead in 1959 by 

deriving empirical equations to predict spread width and elongation through their investigations, 

laying a foundation for subsequent studies. Nevertheless, their equations omitted the consideration of 

friction as an influencing factor and emphasized that the spread ratio (S) was primarily influenced by 

the shape of the anvil contact surface. As research progressed, other scholars extensively studied the 
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calculation formulas for the spread ratio (S) and proposed corresponding improvement methods. 

These scholars integrated additional factors into their prediction models, such as anvil width, 

workpiece width, the ratio of initial height to width, and material constants, aiming for more accurate 

predictions of spread ratio variations. They primarily adopted analytical methods and physical 

experimentation as their research approaches. Currently, several prominent spread ratio prediction 

models have been put forward[2].  
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where: 
1h - The height of the workpiece after forging, mm 

0h - The height of the workpiece before forging, mm 

h - Half the height of the workpiece before forging, mm 

b - The anvil width, mm 

0w - Initial width of workpiece, mm 

1w - The maximum width of the workpiece, mm 

A, B- material constants. 

 

The above formulas fully account for the relationships between process parameters—such as 

anvil width ratio, workpiece width ratio, and reduction ratio- and the spread ratio. However, 

considering only the spread ratio as a single-dimensional indicator during the elongation of variable 

cross-section forgings is far from sufficient. Since the ultimate goal is to obtain an initial workpiece 

with a large cross-section ratio, the fullering coefficient, which characterizes this ratio, must be 

introduced as a key factor. Furthermore, due to the inevitable generation of barreling caused by 

friction on the upper and lower die surfaces, the barrelling degree B must also be considered as an 

influencing factor. In addition, maxmium elongation ratio, as a constraint on the workpiece’s axial 

dimension, cannot be neglected. 
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2. Object and subject of research 

 

The focus of this study is to reveal the deformation behavior of the workpiece during the drawing 

process for variable cross-section forgings, with the goal of determining optimal process parameters, 

reducing the number of forging steps, and improving both production efficiency and part quality. The 

research object is an aerospace bracket featuring a large flange structure, with a maximum cross-

section ratio of 2.7, as shown in Figure 1a. To enhance forging quality and minimize the number of 

forging passes, the workpiece must be drawn to better align the axial material distribution with that 

of the final part, thereby simplifying subsequent forging operations. The initial shape and key 

dimensions of the workpiece are determined by analyzing the forged part’s cross-sectional and 

diameter profiles, as illustrated in Figures 1b and 1c. 

 

 
Figure 1. Forging analysis diagram (a - aircraft bracket b - ideal workpiece size after drawing c 

- cross-sectional and diameter profiles). 

 

3. Target of research 

 

This study aims to establish a clear relationship between key process parameters and the 

geometric features of drawn forgings, focusing on complex variable cross-section components. Using 

thermomechanical FEM simulations, a dataset is built to capture deformation under varying 

conditions. Introduced geometric indicators are used to characterize shape evolution better. A neural 

network trained on these data enables rapid, accurate prediction of optimal process parameters. This 

FEM–ANN approach improves forging quality, reduces process steps. 

 

4. Literature analysis 

 

The earliest research on workpiece spread in forging was conducted by Tomlinson and Stringer 

[5], who developed empirical equations for predicting spread and elongation. These equations did not 

consider the influence of friction and indicated that the spread coefficient (s) primarily depends on 

the shape of the anvil contact surface. B. Aksakal and F.H. Osman et al. analyzed spread and 

elongation during forging using the upper bound method, as illustrated in Fig. 2 [6]. Kudo [7] 
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proposed a "unit rectangular deformation zone" method for conveniently analyzing complex plane 

strain problems. Baraya and Johnson [8] employed the upper bound method to investigate the forging 

process of rod-shaped forgings. By studying triangular velocity zones in three different metals, they 

proposed solutions for determining force diffusion. These three schemes inherently possess 

constraints, as they must conform to specific ranges of anvil width ratios.  

 

 
Figure 2. Study on spread and elongation of forgings using the upper bound method. 

 

Safar and Juneja [9] conducted relevant studies on the total required force under consideration 

of expansion deformation. By performing experiments with rectangular aluminum bars and flat anvils 

of varying widths, they established the material’s rheological laws. Braun et al. [10] addressed issues 

related to spread and pressure using the upper bound method. In their research, they forged 

rectangular metal bars using a pair of opposing flat anvils. Kanacri et al. [11] investigated the 

calculation of stress and displacement during plastic deformation of thin plates by compressing 

rectangular forgings with two parallel flat plates. Their work demonstrated a rheological curve where 

spread increases with rising friction coefficient, thereby revising the theory proposed by Hill [2]. 

Although these researchers using upper bound theory and analytical approximations greatly 

advanced the understanding of forging mechanics, these methods have notable limitations. They 

depend on idealized assumptions—such as uniform deformation and rigid-plastic material behavior—

that restrict their accuracy under realistic forging conditions. Moreover, they are ill-suited for 

handling complex geometries and asymmetric deformation, often requiring oversimplification. 

Additionally, they fail to account for key nonlinearities in material behavior and process parameters, 

such as temperature dependence, strain rate sensitivity, and variable friction, reducing their 

applicability to modern, precision forging processes[12]. In contrast, the finite element method (FEM) 

offers a more advanced and accurate approach to forging analysis by enabling detailed modeling of 

complex geometries and incorporating realistic material behaviors such as strain hardening, thermal 

softening, and strain rate sensitivity[13]. 

Ding[14] conducted an in-depth study on the drawing process of heavy plate forgings by Finite 

Element Method (FEM). It was found that key elongation process parameters such as reduction ratio 

, anvil width ratio, width-height ratio, strain rate, friction factor, and initial temperature have 

significant effects on the forming quality. The results showed that the errors of elongation and 

widening between each working step did not exceed 3.9%. Therefore, the complex multi-step 

problem can be simplified into a single-step study, providing a new approach to optimize the 

elongation process and improve the quality of forgings. 
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Figure 3. Elongation process (a - Tomlinson and Stringer's model b - this paper 's model). 

 

5. Research methods 

 

This study adopts a hybrid modeling approach that combines the finite element method (FEM) 

with neural networks. FEM is used to simulate the forming process of variable cross-section forgings 

under different process parameters, generating high-precision geometric data as training samples for 

the neural networks. The neural networks is then employed to model complex nonlinear relationships, 

enabling rapid prediction and multi-objective optimization, thereby significantly reducing the number 

of simulations and improving efficiency. This method demonstrates strong generalization capability, 

making it applicable to the process optimization of various forging types and suitable for integration 

into intelligent manufacturing systems to achieve real-time prediction and process control[15] -[16]. 

Firstly, 3D thermodynamic coupling finite element model is constructed, focusing on revealing the 

influences of six key process parameters, namely, temperature (500-900°C), friction factor (0.3-0.7), 

pressing speed (5-15mm/s), anvil-width ratio (b/h=0.6-1.2), width-height ratio (w/h=0.6-1.2), and 

reduction ratio (ξ=10-60%) on the drawing process. A multidimensional forming quality evaluation 

system was established by introducing four quantitative indexes of geometrical characteristics, 

namely, fullerring coefficient (F), barrelling degree (B), maximum elongation ratio (E) and spread 

ratio (S). The orthogonal experimental design and full factorial combination method are used to 

construct a feature matrix containing 16 groups of process-response data, and a process parameter 

prediction model is developed by combining with the neural networks to realize the nonlinear 

mapping between the forming quality and the process conditions. The ultimate goal is to establish an 

accurate prediction model for the single-step drawing process and achieve multi-objective 

collaborative optimization. 

Among them, four important parameters in the drawing process are the maximum elongation 

ratio (E), maximum spread ratio (S), barrelling degree (B) and reduction ratio (ξ), which are calculated 

using the following formulas: 
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where： 0l - Length before forging, mm 

1l - Length after forging, mm 
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h - Height before forging, mm 

1h - Height after forging, mm 

0W - Initial width of workpiece, mm 

maxW - The maximum width of the workpiece after forging, mm 

 

Due to the inevitability of friction, this article uses the barrelling degree (B) as one of the 

parameters to judge the shape of the workpiece after drawing. Zhang et al. [17] studied the causes 

and effects of drum formation during the flat anvil upsetting process, and gave the calculation formula 

for B: 
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where： maxW
 - The maximum width of the workpiece after forging, mm 

1W  - Spreading width of the contact surface with the anvil after forging, mm 

 

In addition to considering the generation of “barrelling” shape, another important parameter to 

predict whether the workpiece meets the requirements after drawing is fullerring coefficient (F), 

which represents the ratio of the cross-sectional area before and after forging. The calculation formula 

of F is: 
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where： beforeA
-  Cross-sectional area before forging; 

f terAa - Cross-sectional area after forging. 

 

6. Research results 

 

Fig. 4 presents a comparison of results under different conditions of friction coefficient, pressing 

speed, and anvil temperature. It is evident from the figure that the friction coefficient and pressing 

speed have insignificant effects on parameters such as F, B, E, and S. However, the anvil temperature 

has a considerable impact on the S and B. Specifically, when the anvil temperature is low, the values 

of S and B increase. This phenomenon can be attributed to the “chilling” effect that occurs at the end 

face of the workpiece when the anvil  temperature is much lower than the workpiece temperature. 

This “chilling” effect leads to an increase in material deformation resistance at the dead zone, thereby 

exacerbating deformation inhomogeneity. To avoid this unfavorable chilling effect, we should try to 

increase the anvil temperature. Therefore, in the subsequent analysis of the influence of b/h, w/h, and 

ξ on the drawing process, we will no longer consider the heat transfer between the anvil and the 

workpiece. That is, we assume that the forging process takes place under isothermal conditions. Under 

this premise, we set the pressing speed to 5mm/s and the friction factor to 0.3 to further simplify the 

analysis process and highlight the impact of key process parameters. 
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Figure 4. Comparison diagram under different friction coefficients, pressing speeds and anvil 

temperatures. 

 

Fig. 5 shows a comparison of the effects of b/h, w/h, and ξ on F in a single step. Analysis reveals 

that F is directly proportional to the ξ and  b/h, and inversely proportional to the w/h. When the ξ is 

below 20%, the increase rate of F is relatively moderate, and the influence of b/h and w/h on F is 

minor. However, when the ξ exceeds 20%, the growth rate of F becomes steep, and the impact of b/h 

and w/h on F becomes more significant. Additionally, it is worth noting that F is directly proportional 

to the  w/h and inversely proportional to the b/h. Therefore, to achieve a higher value of F, it is 

necessary to maximize the b/h and ξ while minimizing w/h. 

 

 

Figure 5. Comparison diagram of the effects of w/h, b/h, and ξ on F in single step (a - w/h vs F, b - 

b/h vs F). 

 

Fig. 6 compares the effects of b/h, w/h and ξ on the B in a single step. Through in-depth analysis, 

we found that the B is directly proportional to the ξ and b/h, and inversely proportional to the w/h. 

Specifically, when the ξ  is below 20%, the increase rate of B is relatively flat, and the influence of 
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b/h and w/h on B is not significant. However, when the ξ exceeds 20%, the growth rate of B 

accelerates significantly, and the impact of b/h and w/h on B also increases. Additionally, when the 

w/h is less than 0.6, there is an increased risk of double barreling, which is a critical aspect to consider 

during the design of the drawing process. 

 

 
Figure 6. Comparison diagram of the effects of w/h, b/h, and ξ on B in single step  (a - w/h vs B, b - 

b/h vs B). 

 

Fig. 7 reveals the impact of b/h, w/h, and ξ on parameter E in a single step. It is evident from the 

figure that E is inversely proportional to the w/h and directly proportional to the b/h. This trend arises 

because as the w/h decreases or the b/h increases, the contact area between the anvil and the workpiece 

increases accordingly. Under the same ξ conditions, this increase in contact area leads to a larger 

amount of material transfer in the axial direction, which directly affects the value of parameter E. 

Therefore, in practical operations, we can adjust the w/h and b/h to control the axial flow of the 

material, thereby optimizing the quality and shape of the forging. 

 

 
Figure 7. Comparison diagram of the effects of w/h, b/h, and ξ on E in single step  (a - w/h vs E, b - 

b/h vs E). 

 

Fig. 8 compares the effects of b/h, w/h, and ξ on  S in a single step. As can be seen from the 

figure, the  S is inversely proportional to the w/h and directly proportional to the b/h. The reason for 

this phenomenon lies in the unavoidable friction between the anvil and the workpiece. When the w/h 

decreases or the b/h increases, the dead zone at the contact point between the anvil and the workpiece 

enlarges accordingly. This increase in the dead zone promotes the tendency for barreling to occur, 

thereby affecting the variation in the S. 
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Figure 8. Comparison diagram of the effects of w/h, b/h, and ξ on S in single step  (a - w/h vs S, b - 

b/h vs S). 

 

Neural networks is an important branch in the field of machine learning, which simulates the 

structure and working mode of neural networks in the human brain. Neural networks are composed 

of a large number of neurons (or nodes) connected to each other. These neurons receive input signals 

and generate output signals through activation functions. During training, the network adjusts internal 

connection weights based on input data and desired outputs to minimize prediction errors[18][19]. 

Tab. 1 shows the sample data used for training learning which is obtained through finite element 

method(FEM). 

 

Table 1. Sample data for training learning 

No. b/h w/h ξ /% F B/% 

1 0.6 0.6 30 1.23 4.50 

2 0.6 0.8 40 1.36 3.66 

3 0.6 1 50 1.34 14.97 

4 0.6 1.2 60 1.97 5.53 

5 0.8 0.6 40 1.32 13.42 

6 0.8 0.8 30 1.23 6.59 

7 0.8 1 60 1.80 9.97 

8 0.8 1.2 50 1.59 8.21 

9 1 0.6 50 1.41 20.39 

10 1 0.8 60 1.58 13.12 

11 1 1 30 1.22 7.04 

12 1 1.2 40 1.37 5.85 

13 1.2 0.6 60 1.47 18.67 

14 1.2 0.8 50 1.39 13.78 

15 1.2 1 40 1.31 10.43 

16 1.2 1.2 10 1.06 1.96 

 

After rigorous training, verification and testing processes, the constructed neural network 

performed well in various evaluation indicators, especially the R value (correlation coefficient) was 

close to 1 during the training, verification and testing stages, as shown in Fig. 9. This result fully 

demonstrates that the neural network model can accurately fit the data and effectively extract useful 

information from the data. 
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Figure 9. Regression of training, validation and test. 

 

Tab. 2 presents a comparison between the predicted values from Neural network prediction 

model (NNP) and the simulated values from the finite element method(FEM). The data in the table 

reveals that the overall error remains within 2%, indicating a high accuracy of the established 

prediction model. However, under specific parameter combinations, such as an b/h=0.8, a w/h=8, and 

a ξ=50%, a maximum error of 12.54% is observed.  1) The sample data used to train the neural 

network is limited, and the computer may have certain limitations in understanding and learning 

material flow behavior. This can lead to larger prediction errors under specific parameter 

combinations. 2) The drawing process is a complex deformation process involving nonlinear material 

flow and coupling of multiple physical fields. Even if the neural network has learned a large amount 

of sample data, it is still difficult to accurately predict material flow behavior in all situations, resulting 

in prediction errors. Consequently, compared with the FEM, the NNP approach demonstrates superior 

computational efficiency, achieving high prediction accuracy with Limited sample size. This 

combination of reduced computational cost and data requirements substantially accelerates the design 

process. 

 

Table 2. Comparative results of the NNP and FEM 

No. b/h w/h ξ /% 
F Differ

ence/

% 

B Differ

ence/

% NNP  FEM NNP  FEM 

1 0.6 0.6 50 1.53 1.51 1.33 9.110 9.21 1.09 

2 0.8 0.8 50 1.67 1.49 12.08 11.44 13.08 12.54 

3 1.2 0.6 50 1.37 1.35 1.48 18.31 18.45 0.759 

 

In the drawing process, the ξ is a crucial parameter. When the  ξ reaches 50%, tensile stress starts 

to emerge at the transition between the loaded and unloaded zones. The occurrence of this tensile 
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stress may have adverse effects on the overall performance of the workpiece. In particular, when the 

ξ further increases to 60%, the area of tensile stress in the unloaded zone expands significantly. This 

situation greatly increases the risk of surface cracking and internal defects in the workpiece. 

Therefore, when designing the drawing process route, although increasing the ξ can improve drawing 

efficiency to some extent, it also increases deformation inhomogeneity. More importantly, we must 

fully consider the internal stress state of the workpiece. An excessively high reduction ratio may lead 

to uneven stress distribution inside the workpiece, thereby increasing the risk of damage. 

 

 

Figure 10. Stress distribution（a - ξ=50%,  b - ξ=60%）. 
 

To strike a balance between ensuring drawing process efficiency and guaranteeing the quality 

and safety of the workpiece, we conducted comprehensive considerations. Ultimately, this paper 

selects a reduction ratio ξ of 40% as a relatively ideal parameter. At this reduction ratio, the fullerring 

coefficient F remains between 1.3 and 1.4, resulting in a moderate barrelling degree B. Meanwhile, 

the elongation ratio E is maintained at a relatively high level, indicating that the workpiece can retain 

good deformation capability during the drawing process. To enhance the efficiency of the drawing 

process, this paper also adopts a single step per pass approach. Therefore, the anvil width needs to be 

longer than the elongation of the workpiece. After simulation, the final workpiece dimensions are 

shown in Fig. 11, with a calculated F value of 2.84. A higher F value means that the cross-section 
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ratio of the workpiece is larger, which can reduce unnecessary pre-forging process steps and improve 

production efficiency. 

 

 

Figure 11. The workpiece after drawing process 

7. Prospects for further research development 

 

While this study successfully integrates thermomechanical-coupled FEM simulation and neural 

network modeling for process optimization of variable cross-section forgings, several avenues remain 

for future exploration. First, extending the methodology to multi-stage or multi-pass drawing 

processes could provide more comprehensive control over complex deformation paths and residual 

stress distribution. Second, integrating additional factors such as anisotropic material behavior, tool 

geometry, and real-time thermal gradients would further enhance model fidelity and practical 

applicability. Moreover, the use of advanced deep learning architectures (e.g., convolutional or graph 

neural networks) may improve prediction accuracy and generalization across different forging 

geometries. 

 

8. Conclusions 

 

This study built a quality prediction model for the drawing process by integrating finite element 

simulation and neural network technology. The thermomechanical coupling finite element analysis 

method was used to systematically reveal the coupling mechanism of six key process parameters on 

the drawing process, including temperature (500-900℃), friction factor (0.3-0.7), pressing speed (5-

15 mm/s), anvil width ratio (b/h=0.6-1.2), width-height ratio (w/h=0.6-1.2) and reduction rate (ξ=10-

60%). Four evaluation indicators(F, B, E, S) are introduced for the geometric characteristics of the 

workpiece after drawing. The study finally came to the following core conclusions: 

1. Temperature, anvil width ratio (b/h), width-height ratio (w/h), and reduction ratio (ξ) are 

identified as dominant factors influencing the drawing process. A single-step reduction ratio of 40% 

is optimal for balancing efficiency and workpiece integrity, while exceeding 50% risks adverse 

internal stress states. Frictional effects and pressing speed exhibit negligible impact compared to these 

parameters. 

2. A neural network framework is employed to analyze collected training data, establishing a 

high-precision predictive model with a post-training correlation coefficient of 0.973. Its robustness is 

further validated through rigorous testing across three independent datasets, demonstrating its 

capability to forecast deformation outcomes with high precision.  

3. By analyzing the deformation characteristics of the single-step drawing process, a customized 

forming strategy was developed for the variable cross-section forgings. Through comparative analysis, 

the optimal process parameters were determined as follows: temperature of 900 °C, pressing speed of 

5 mm/s, friction factor of 0.3, reduction ratio (ξ) of 40%, and a width-to-height ratio (w/h) of 1, anvil 

width ratio (b/h) of 1.2. Under these conditions, the maximum F value reached 2.84, the minimum B 
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value is 5.85%, providing strong technical support for Improving the production efficiency and 

quality of the variable cross-section forgings. 
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