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Abstract: This paper aims to study large-scale processes that persist over time to describe their 

stability, and to monitor and diagnose negative changes. By utilizing fractal structure analysis of time 

series, the research investigates the applicability of the Hurst exponent in diagnosing the stability of 

various natural and man-made systems. The findings highlight the limitations of standard Gaussian 

statistics and the effectiveness of fractal analysis in revealing hidden patterns and long-term 

dependencies in complex systems. 

Keywords: Fractal analysis, Hurst exponent, time series, large-scale processes, stability 
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1. Introduction 

 

Ensuring the stability of measurement results is crucial in sectors requiring accurate and reliable 

measurement of large-scale process parameters, such as production, transportation, energy, and 

environmental monitoring. These processes often exhibit complex dynamic changes in both time and 

space. Minor fluctuations or unforeseen effects under such conditions can significantly impact 

measurement results, leading to loss of stability and accuracy (Butakov & Grakovsky, 2005). 

Researchers and engineers face various challenges, primarily stemming from disturbances 

(errors) and external influences affecting the measurement process. These include environmental 

changes, electromagnetic interference, mechanical vibrations, and other uncontrollable factors. 

Moreover, large-scale processes evolve over time due to equipment wear, material composition 

changes, and environmental variations, further diminishing measurement stability and data quality. 

To address these issues, effective methods for diagnosing measurement stability must be 

developed. These methods enable quick identification and mitigation of unwanted effects, as well as 

real-time monitoring and control of measurement processes. Fractal analysis of time series emerges 
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as a promising tool in this regard, uncovering hidden patterns and structural features that classical 

methods may overlook (Falconer, 2013) (Otkhozoria, Azmaiparashvili, Petriashvili, Otkhozoria, & 

Akhlouri, 2023). 

Diagnostics play a pivotal role in ensuring measurement reliability and accuracy across various 

industries, scientific disciplines, and technological applications. They facilitate early detection of 

anomalies and deviations from norms during measurements, preemptively averting potential errors. 

Diagnostics also assess the quality and stability of measurement results, essential for reliability and 

accuracy assurance. Analyzing statistical data characteristics and noise levels further aids in 

determining measurement reliability. 

Results from diagnostics inform the development and implementation of management and 

correction methods for measurement systems. These may involve automated equipment calibration, 

compensation for external influences, or optimizing measuring device parameters to enhance 

accuracy and reliability. In industrial and manufacturing contexts, measurement accuracy directly 

impacts final product/service quality. Compliance with quality standards and regulatory 

requirements, driven by diagnostics, ensures customer satisfaction and regulatory compliance. 

Thus, developing diagnostic mechanisms for observing, monitoring, controlling impacts, and 

preventing adverse consequences of global environmental changes and large-scale technological 

processes is a pressing task of our time. Establishing theoretical foundations and practical 

implementations in diagnostics is critical for meeting modern challenges effectively (Chkheidze, 

Otkhozoria, & Narchemashvili, 2021). 
 

2. Object and subject of research 
 

The object of this research is large-scale processes that exhibit complex dynamics over extended 

periods. The subject of this research is the stability and behavior of these processes as analyzed 

through the fractal structure of their time series data. 

 

3. Target of research 

 

The aim of this paper is to study large-scale processes that persist over time, to describe the 

stability of their condition, and to monitor and diagnose negative changes. By employing fractal 

analysis techniques, this research seeks to uncover underlying patterns and provide insights into the 

stability and potential anomalies within these processes. 

 

4. Literature analysis 

 

Standard Gaussian statistics are valid based on the following assumptions. The central limit 

theorem states that as the number of trials increases, the marginal distribution of a random system 

will approach a normal distribution. The events must be independent and identically distributed (i.e., 

they must not influence each other and must have the same probability of occurrence). 

When studying complex systems, it is common to assume that the system follows a normal 

distribution so that standard statistical analysis can be applied. However, systems studied in practice 

(such as sunspots, annual precipitation averages, financial markets, and time series of economic 

indicators) often do not follow a normal distribution. Hurst proposed the normalized range method 

(R/S analysis) for analyzing such systems. This method distinguishes between random and fractal 

time series and draws conclusions about the existence of non-periodic cycles, long-term memory, and 

other characteristics. 
 

5. Research methods for Fractal analysis of time series of multi-year monitoring results 

 

Fractal analysis of time series from multi-year monitoring data at Vardzia's complex monitoring 

system considers temperature observations recorded every three hours in December from 2017 to 
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2023 by an internal space sensor of a boiler. The monthly observations total 240 (30 days × 8 

measurements per day = 240, denoted as n=240). Over the entire seven-year period, this results in a 

total of N=1680 observations. 

These observations are categorized by year, resulting in fragments of size n=240 (1680 

observations ÷ 7 years = 240), indexed by i. Each fragment is further divided into daily elements, 

with m=8 measurements per day. Each individual measurement is denoted by the index u. 

Table 1 presents the initial results of seven years of observation from December 1-15, 2017, 

segmented into fragments and daily elements. 

 

Table 1. Data for the month of December 2017 
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The daily values of the data are presented as arithmetic averages derived from the entire day's 

observations (8 measurements each day): 

 

�̅�𝑚 =
1

𝑛
∑ 𝑥𝑖(𝑡𝑖℃)8

𝑖=0 ,      (1) 

 

And the arithmetic average for each year (fragments) of the December data from 2017 to 2023 

is as follows: 

 

〈𝑥(𝑛)〉 = ∑ 𝑥(𝑖) =𝑛
𝑖=1

1

7
(〈𝑥2017〉 + 〈𝑥2018〉 + 〈𝑥2019〉 + 〈𝑥2020〉 + 〈𝑥2021〉 + 〈𝑥2022〉 +

〈𝑥2023〉) =
1

7
(5,265 + 5,839 +  6,142 + 6,19 + 6,202 + 6,23 + 6.95) = 6,1; 
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The total deviations from the average value are calculated using the formula: 
 

𝑋(𝑚, 𝑛) = ∑ [𝑋(𝑢) − 〈𝑥(𝑛)〉]𝑚
𝑢=1     (2) 

 

where 〈𝑥(𝑛)〉 = �̅�(𝑛) represents the average value of the complete December 2017 dataset; 𝑋(𝑢) 

- denotes the arithmetic average of daily data for December of the respective year; Accordingly, 

𝑋(𝑚, 𝑛)  is the cumulative sum of deviations from the average value for the same year and month. 

The data for December 16-30, 2017, and each subsequent year are calculated similarly, except 

that the data from the first and second halves of December of each year are aggregated. For instance, 

the combined value for the first half of December 2017 is 𝑋(𝑚, 𝑛) = ∑ [𝑋(𝑢) − 〈𝑥(𝑛)〉]𝑚
𝑢=1  , and for 

the second half, it would be: 
 

𝑋(𝑚, 𝑛)𝑑𝑒𝑐 = (1 − 15 𝑑𝑒𝑐. )𝑋(𝑚, 𝑛)𝑑𝑒𝑐 + (16 − 30 𝑑𝑒𝑐. )𝑋(𝑚, 𝑛)𝑑𝑒𝑐 = 0,92 
 

We calculate the mean square deviation of the observation data: 
 

           𝑆𝑚 = √
(�̅�𝑚−𝑋𝑢)2

𝑚−1
      (3) 

 

Also, for each fragment, we calculate the range of deviations, also known as the swing or 

amplitude change: 
 

𝑅(𝑛) = 𝑚𝑎𝑥𝑚𝑋(𝑚, 𝑛) − 𝑚𝑖𝑛𝑚𝑋(m, n)    (4) 
 

According to the observation results, the schedule depicting changes in average temperature 

values for the month of December is provided in Table 2 and Figure 1. 

 

Table 2. Average temperatures for the month of December 

years of observation 2017 2018 2019 2020 2021 2022 2023 

Arithmetic average 5.265 5.84 6.142 6.19 6.202 6.23 6.95 

 

 
Figure 1. The change in the average value of the temperature in the month of December. 
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The change in the average value of the temperature in the month of December. Based on these 

data, it is possible to identify a range of temperature values where a change in temperature is expected 

with high probability, and any deviation from this range can be considered an anomalous event. In 

our case, this range is ±0.5℃. 

The algorithm for calculating the obtained data will be formed as follows: 

1. We divide  N  (observations over 7 years) into fragments (the month of December every year) 

and elements (daily observations of the month with 3-hour intervals), totaling 8 measurements per 

day x 30 days x 7 years = 1680 measurements. 

2. We introduce notation for data: 

 {𝑥(𝑖)}, 𝑖 = 1, 2, … , 𝑛,  which represents the arithmetic mean: 

 

    〈𝑥(𝑛)〉 = 1
𝑛⁄ ∑ 𝑥(𝑖)𝑛

𝑖=1 ;     (5) 

 

 over the years of observation (the mean of the means), approximately   〈(6,117)〉 ≈ 6,1. 

3. To calculate the standard deviation: 

 

 𝑆(𝑛) = √
1

𝑛−1
∑ [𝑥(𝑖) − 〈𝑥(𝑛)〉]2𝑛

𝑖=1      (6) 

 

Calculated for each year, the standard deviation of the average temperatures in December (for 

December 2018) is: 

 

𝑆�̅̅� = √
(�̅�𝑛−𝑋𝑖)2

𝑛−1
= 0.595     (7) 

 

The sum of deviations from the mean value after m measurements is 

 

𝑋(𝑚, 𝑛) = ∑ [�̅�𝑚 − 〈𝑥(𝑛)〉]𝑚
𝑢=1      (8) 

 

The difference between the maximum and minimum values of the received data, or deviation, is 

𝑅(𝑛) = 𝑚𝑎𝑥𝑚𝑋(𝑚, 𝑛) − 𝑚𝑖𝑛𝑚𝑋(𝑚, 𝑛) 

Hurst's empirical law applies to a large number of natural phenomena and processes: 
 

(
𝑛

2
)

𝐻

=
𝑅(𝑛)

𝑆𝑛
     (9) 

 

The steps are: 

1. For each element (one day) in a fragment (one month), calculate the sum of deviations from 

the average. 

2. Calculate the displacement for all elements. 

3. Divide the deviation by the mean square deviation of this fragment. 

The results of the obtained data are presented in Table 3. 
 

Table 3. Fragments according to the years 2017-2023 

№ Years 𝑅(𝑛) 𝑆𝑛 
𝑅(𝑛)

𝑆𝑛
⁄  𝑙𝑜𝑔 𝑅(𝑛)

𝑆𝑛
⁄  (

𝑛

2
)

𝐻

 𝐻 = 𝑙𝑜𝑔 𝑛
2⁄  

1 2017 12.63 1.33 9.49 0.97 (30
2⁄ )𝐻 1.176 

2 2018 11.45 0.62 18.46 1.267 (60
2⁄ )𝐻 1.47 
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3 2019 11.17 0.64 17.45 1.24 (90
2⁄ )𝐻 1.95 

Continued table 3 

4 2020 12.12 0.602 20.13 1.29 (120
2⁄ )𝐻 1.78 

5 2021 13.07 1.05 12.44 1.11 (150
2⁄ )𝐻 1.87 

6 2022 12.67 0.746 17.12 1.23 (180
2⁄ )𝐻 1.95 

7 2023 13.21 0.686 19.25 1.28 (210
2⁄ )𝐻 2.02 

 

For all seven fragments, plotting [log
𝑅(𝑛)

𝑆(𝑛)
 , log

𝑛

2
] gives a set of points. 

Using the method of least squares, we find the mathematical model of the regression line 

equation, whose angular coefficient is the estimate of the Hurst index. 

 

 
Figure 2. Logarithmic values of coordinates for fragments by years. 

 

The regression equation is: 
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continue as a trend in the future. A Hurst coefficient close to 0.5 indicates a greater number of random 

detectors in the series, with a less pronounced growth trend. 

In addition to serving as a classification criterion, the Hurst index can directly record the 

degradation of an object before destructive processes occur. For example, in the temperature 

monitoring system of Vardzia, the level of temperature deviation due to environmental changes shows 

a clear growth trend, potentially influencing the humidity regime inside the boiler. Despite the lack 

of observational data, it is clear that these changes could have cumulative effects, such as rock 

deformation or structural changes. The transition from the localization zone of plastic deformation to 

the rupture zone is characterized by a sharp increase in the Hurst index. 

 

8. Conclusions 

 

The fault deformation and structural change diagnosis algorithm is efficient even with limited 

computing resources, enabling the creation of a unified core for measurement data collection and 

processing in the monitoring system. The adequacy of the procedure increases with the number of 

analytical quantities. 
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