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Abstract: The improvement of autonomous driving systems and advanced driver assistance 

systems (ADAS) heavily relies on accurate vehicle trajectory prediction. This research focuses on 

developing a robust method for predicting the trajectories of surrounding vehicles by leveraging 

machine learning techniques and neural networks. The study integrates data from onboard sensors, 

vehicle-to-vehicle (V2V) communication, cameras, LiDAR, and Differential GPS (DGPS) to 

enhance the accuracy and reliability of trajectory forecasts. Traditional approaches, primarily based 

on physical models, fall short in complex driving scenarios due to their dependency on uniform 

motion parameters. The investigated approach addresses these limitations by employing separate 

algorithms to predict longitudinal and lateral positions, thereby improving safety and reducing 

collision risks. The implemented algorithms were initially tested on simulated data, confirming their 

functionality. Future steps involve collecting and preparing real-world data to evaluate the algorithms 

under diverse and complex road conditions. This paper lays the groundwork for future developments 

in collision avoidance systems and highlights the potential benefits of integrating advanced 

perception systems in enhancing environmental perception and data quality. The proposed method 

shows promise in mitigating traffic accidents and optimizing traffic flow, underscoring its importance 

for future automotive innovations. 

Keywords: advanced driver assistance system, vehicle-to-vehicle communication, trajectory 

prediction, machine learning, onboard sensors, random forest, recurrent neural network. 

 
 

1. Introduction 

 

Trajectory prediction for vehicles is a critical task in developing autonomous driving systems 

and advanced driver assistance systems. Considering that the number of cars on the roads constantly 

increases, modern automobile systems aim to provide higher levels of safety and traffic efficiency. 

One of the main challenges remains reducing traffic accidents, which can be achieved by improving 

systems for predicting the behavior of surrounding vehicles. With the help of machine learning 

technologies and vehicle-to-vehicle communication, there is potential to significantly enhance the 

accuracy and reliability of trajectory prediction, making this topic extremely relevant for research. 
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2. Object and subject of research 

 

The object of the research is the prediction of vehicle trajectories. The study focuses on the 

combined application of various machine learning algorithms and neural networks to enhance the 

accuracy and reliability of trajectory forecasts. Data from the onboard sensors and vehicle-to-vehicle 

(V2V) communication messages is utilized to create a robust model capable of accurately predicting 

future vehicle positions based on real-time inputs. The approach leverages the strengths of different 

machine learning techniques, including supervised learning for model training and reinforcement 

learning for continuous improvement. 

In addition to the prediction system, the research investigates a comprehensive perception 

system. The perception framework integrates information from multiple sources, including cameras, 

LiDAR, V2V communication, and Differential GPS (DGPS), to improve environmental perception 

accuracy and provide high-quality data for the prediction step. By combining these technologies, the 

system aims to create a more detailed and precise representation of the vehicle's surroundings. 

Despite its potential, the current system has several shortcomings. One notable challenge is the 

need for large volumes of high-quality data to train the models effectively. Additionally, there are 

limitations related to the integration of data from diverse sources, which can introduce inconsistencies 

and affect prediction accuracy. Moreover, the real-time processing requirements pose significant 

computational demands, which can be a constraint in practical implementations. 

 

3. Target of research 

 

The primary goal of the study is to develop and implement an advanced method for predicting 

the trajectories of surrounding vehicles. To achieve this objective, the research focuses on several key 

tasks. The first task is to integrate machine learning techniques and neural networks to enhance the 

accuracy of trajectory forecasts. By utilizing data from various sources, including vehicle-to-vehicle 

(V2V) communication and onboard sensors, the method predicts both the longitudinal and lateral 

positions of vehicles with greater precision. 

Another essential task involves improving the data fusion process to ensure consistency and 

reliability of the input from diverse sources. This includes refining algorithms for real-time data 

processing to meet the computational demands of practical applications. Additionally, strategies for 

continuous learning and adaptation are being developed, enabling the prediction system to improve 

over time with new information. 

The ultimate objective is to enhance road safety by providing more precise and reliable trajectory 

predictions, thereby reducing the risk of collisions. By addressing the identified shortcomings in 

existing systems, the research aims to contribute to the development of more robust and effective 

autonomous driving and advanced driver assistance systems. 

 

4. Literature analysis 

 

Autonomous vehicles have seen rapid development over the past decade, particularly in terms of 

safety and efficiency [1]. Original equipment manufacturers are dedicated to advancing driver 

assistance systems (ADAS) to reduce traffic accidents. Vehicles equipped with ADAS, such as 

adaptive cruise control, lane-keeping assistance, and emergency braking systems, are already 

available. The collision avoidance system (CAS) is one of the most crucial driver assistance systems, 

capable of predicting collision scenarios and alerting the driver in advance. Development vectors for 

CAS include forward collision warning, blind-spot monitoring, lane departure warning, cross traffic 

alert, and pedestrian detection, as depicted in Figure 1. 
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Figure 1. Classification of collision avoidance systems. 

A critical task for collision warning systems involves the accurate perception and analysis of the 

road environment, specifically predicting the trajectories of surrounding vehicles. Trajectory 

prediction is complex and multifaceted, influenced by driver behavior and specific road conditions. 

Numerous approaches have been proposed to address this challenge [2]. 

Traditional methods for trajectory prediction rely on physical models. Dynamic physical models 

describe movement based on internal vehicle parameters, such as longitudinal and lateral tire forces. 

Kinematic physical models, used more frequently, describe the vehicle's trajectory based on motion 

parameters like speed, acceleration, and position. However, kinematic models demonstrate high 

accuracy only in uniform driving environments, for instance, when surrounding vehicles move with 

constant speed and acceleration within a single lane. In more complex scenarios, the accuracy of 

trajectory prediction is significantly reduced. 

Machine learning algorithms, particularly recurrent neural networks (RNN), are actively 

employed for trajectory prediction due to their effectiveness in handling time-series data [3-7]. Many 

studies utilize the publicly available NGSIM dataset to train prediction models [3-4]. However, the 

NGSIM dataset contains significant noise, as it was created by processing images from road-mounted 

cameras [8]. Other studies use the relative coordinates of neighboring vehicles as the output of the 

prediction model [5-7]. 

The accuracy of determining the lateral position is a crucial criterion for selecting a trajectory 

prediction model for collision prevention systems. Even if the prediction model's accuracy has an 

error of less than one meter, the collision prevention system may fail in a collision scenario. Figure 2 

illustrates a situation where the longitudinal position of a neighboring vehicle is predicted correctly, 

but an error in predicting the lateral position prevents the system from avoiding the collision. 

 

 

Figure 2. A collision scenario may occur as a result of errors in predicting the lateral position. 

This article presents a method for trajectory prediction using separate algorithms to determine 

longitudinal and lateral positions. The input data includes coordinates of the bounding boxes of 
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surrounding vehicles, obtained from camera sensors, as well as dynamic information received through 

V2V communication. This information enhances the accuracy of trajectory predictions in complex 

driving conditions, contributing to the advancement of driver assistance systems and autonomous 

vehicles. 

 

5. Research methods 

 

The study investigates a system for determining the trajectory of surrounding vehicles using 

onboard sensor data and V2V messages. The system assumes that vehicles are equipped with V2V 

communication capabilities, cameras and optionally LiDAR sensors for recognizing the surrounding 

environment. The proposed structure and data flow are illustrated in Figure 3. 

 

 

Figure 3. System for determining the trajectory of surrounding vehicles. 

The perception system is designed for accurate determination of the position of surrounding 

vehicles. V2V messages include location data obtained via the Global Positioning System (GPS). 

However, GPS has vulnerabilities related to environmental factors. For example, when the road is in 

open areas, the accuracy of location information is about 1 meter, but in urban areas, the location 

error increases to 5–10 meters due to signal blockage and multipath effects [9].  

To address this issue, the use of Differential GPS (DGPS) is proposed, which offers higher 

accuracy compared to the nominal accuracy of the system. The differential mode involves using two 

receivers: one is stationary at a known location, referred to as the “base” receiver, while the other 

remains mobile. Data collected by the base receiver is used to correct the information gathered by the 

mobile unit. Typically, the base receiver is a professional-grade unit owned by a company licensed 

to provide navigation services. DGPS can improve location accuracy by receiving correction 

information from a base station. Since the fixed base station knows its exact location, it can 

periodically calculate GPS errors and broadcast them. 

GPS uses the WGS84 geodetic coordinate system (ECEF-g), which consists of latitude, 

longitude, and altitude. This system can be transformed into a local tangent plane and applied to a 

local coordinate system by rotating according to the vehicle's heading angle. 

Another method to further improve the accuracy of the perception system is by utilizing LiDAR 

data. During the process of transforming global coordinates to a local coordinate system, errors can 

occur depending on the vehicle's heading accuracy. LiDAR sensors generate a 3D point cloud of 

surrounding objects, providing positional accuracy within less than 10 centimeters.  Therefore, the 
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perception system will calculate a more precise position of surrounding vehicles by correlating the 

location information obtained through V2V communication with the LiDAR data. 

To predict the position of surrounding vehicles, a combination of two models is considered: lane 

change prediction and trajectory prediction. For the lane change prediction model, the use of the 

Random Forest algorithm is investigated, while for the trajectory prediction model, a Long Short-

Term Memory (LSTM) neural network is proposed. The accuracy of predicting the lateral position is 

crucial for trajectory prediction in a collision prevention system. Even if the predicted relative 

longitudinal distance is close, it remains a safe state if the vehicle is in an adjacent lane. 

Perception System.  

In the field of autonomous vehicles, cameras are the most widely used sensors. The primary role 

of cameras is to detect and classify surrounding objects. A well-known YOLO algorithm can detect 

objects in real time, since localization and classification are processed simultaneously [10]. The 

recognition speed of YOLO exceeds 45 frames per second, making it suitable for real-time 

recognition systems. Considering this, the proposed system also utilizes the YOLO algorithm for 

environmental recognition and obtaining bounding box values from the camera. 

The coordinate values and size of the bounding box correlate with the relative coordinates of the 

surrounding vehicle, as shown in Figure 4. If the surrounding vehicle is far from the host vehicle, the 

bounding box size is small, otherwise it is large. Additionally, the position of the bounding box also 

correlates with the lane in which the vehicle is moving. For example, if the surrounding vehicle is in 

the adjacent left lane, the bounding box is shifted to the left of the central point of the image. 

Therefore, in this research, the coordinates and size of the bounding box obtained from the camera 

are used as input values for the prediction model. 

 

 

Figure 4. Use of bounding boxes around recognized vehicles at different distances and lanes. 

V2V communication represents an important and promising development direction for modern 

advanced driver assistance systems. V2V communication adheres to the Wireless Access in Vehicle 

Environment (WAVE) standard defined by IEEE, which is based on IEEE 802.11P and IEEE 1609 

standards [11]. With V2V communication using the WAVE standard, vehicles exchange information 

every 100 milliseconds using the 5.9 GHz DSRC (Dedicated Short Range Communications) 

frequency band.  

The information exchanged between vehicles corresponds to the Basic Safety Message (BSM) 

— part of the message set j2735 defined by the Society of Automotive Engineers (SAE) [12]. BSM 

contains dynamic information about the vehicle, such as steering angle and acceleration, as shown in 

Table 1, which significantly helps to model and analyze the road situation even beyond the visual 

range of other vehicles. This capability allows for the prediction and prevention of potential 

collisions, complementing and refining the information from camera and LiDAR sensors in real time, 

and transmitting critical information for the quickest possible response by drivers. 
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Table 1. Basic Safety Message (BSM) structure 

Part I Part II 

Message Count Additional details: vehicle events, path history, etc 

Temporary ID Information used by special vehicles such as police cars 

Time Vehicle type, weather information, road hazard information, etc 

Position  

Transmission  

Speed  

Heading  

Angle  

Accelset  

Brakes  

Size  

Relative vehicle coordinates can be calculated using GPS information contained in the BSM. The 

GPS coordinate system is known as the geodetic coordinate system. To transform this system into a 

local coordinate system with the coordinates of the host vehicle as the origin, it is necessary to convert 

it to a geocentric coordinate system and then to a local tangent plane. Geocentric coordinates can be 

derived from the geodetic coordinate system using equations (1)–(3). There are also existing software 

tools for converting coordinates from the geodetic system to the geocentric system, and vice versa, 

such as the geodetic2ecef function in the Matlab package. 

 

𝑥 = (𝑁 + ℎ) 𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝜑 , (1) 

  

𝑦 = (𝑁 + ℎ) 𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛 𝜑 , (2) 

  

𝑧 = (
𝑏2

𝑎2
𝑁 + ℎ) 𝑠𝑖𝑛 𝜆 , (3) 

  

where  𝜆 – latitude;  

𝜑 – longitude;  

ℎ – altitude;  

𝑎, 𝑏 – major and minor semi-axes of the Earth, respectively, according to the WGS-84 

standard; 

𝑁 – normal distance from the Earth surface to the minor semi-axis determined by the equation 

(4). 

𝑁 =
𝑎2

√𝑎2𝑐𝑜𝑠2(𝜆) + 𝑏2𝑠𝑖𝑛2(𝜆)
. (4) 

The geocentric coordinate system can be converted into the local tangent plane coordinate system 

using a transformation matrix. Equation (5) calculates the coordinates of the surrounding vehicle 

relative to the host vehicle. 
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 −𝑠𝑖𝑛 𝜑 −𝑐𝑜𝑠 𝜑 0 

 ⋅  

𝑥 − 𝑥0 

  , −𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆 −𝑠𝑖𝑛 𝜆 𝑠𝑖𝑛 𝜑 −𝑐𝑜𝑠 𝜆 𝑦 − 𝑦0 

𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜆 𝑧 − 𝑧0 
 

(5) 

 

where  (𝑥, 𝑦, 𝑧) – geocentric coordinates of the surrounding vehicle;  

(𝑥0, 𝑦0, 𝑧0) – geocentric coordinates of the host vehicle.  

The Matlab package includes the function ecef2enu, which implements the described equations 

and converts geocentric coordinates (𝑥, 𝑦, 𝑧) into local coordinates relative to a given local point 

specified by geodetic coordinates. 

The transformation of global coordinates into the local coordinate system relative to the host 

vehicle is completed by rotating the transformation matrix according to the heading angle of the host 

vehicle. However, if there is an error in determining the heading angle, it results in an error in 

determining the relative position. To address this issue, the position of the neighboring vehicle can 

be further assessed using a point cloud obtained through LiDAR.  

The point cloud represents a set of points in the XYZ coordinate system around the position of 

the LiDAR, scanned using multiple rotating laser beams. The accuracy of distance measurement to 

an object in this way is high, up to 10 cm; however, this requires an additional operation for object 

classification. Therefore, existing methods for accurate perception of the surrounding environment 

using LiDAR are mainly divided into three categories: object clustering, object classification, and 

motion tracking [13]. 

When two objects are close to each other, there is a probability of recognizing them as one during 

the object clustering process, as the traditional clustering method classifies objects based on 

Euclidean distance. Recent studies propose object classification using machine learning algorithms 

that recognize the shapes and characteristics of objects [14]. This approach provides better results 

than the traditional clustering method; however, it requires high computational resources and vertical 

resolution, meaning autonomous vehicles need to be equipped with expensive LiDAR.  

To overcome the described limitations, information obtained via V2V communication can be 

combined with point clouds from LiDAR. Although the calculation of the relative position obtained 

through V2V communication and GPS may lack precision, the position of the surrounding vehicle 

can be refined. If clustering is performed around the pre-estimated position, it is possible to 

distinguish reflected points. Reflected points mostly come from the rear part of the vehicle. When the 

vehicle changes lanes or drives on a winding road, points reflected from the sides appear. The closest 

points among the reflections are recognized as the rear part, and the final position can be calculated 

by taking into account the vehicle's coordinates obtained through V2V communication. 

Prediction System.  

Vehicle trajectory is represented as time series data which makes recurrent neural network 

structures widely used in many studies for trajectory prediction [6, 7]. It is necessary to predict the 

location of the neighboring vehicle over a certain period to warn the driver about possible collisions. 

In the prediction system, the accuracy of the vehicle's lateral position is crucial, as false positive or 

false negative warnings may occur depending on the lane width and each vehicle size, even if the 

position accuracy error is within 1 meter. 

The likely position of the vehicle after a certain period can be roughly classified into one of nine 

categories, conveniently represented as a grid in Figure 5. The prediction system consists of a lane 

change prediction model to determine the vertical lines of the grid and a trajectory prediction model 

to determine the horizontal lines. 
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Figure 5. Grid of possible vehicle position at time 𝑡 + 1. 

To avoid overfitting in the prediction model, it is essential to select input data that has a high 

correlation with the output data. The correlation coefficient characterizes the linear dependency 

between parameters. The coordinates and size of the bounding box obtained from the camera have a 

high correlation with the relative position between the host vehicle and the neighboring vehicle. 

Additionally, speed, longitudinal acceleration, heading, and steering angle also correlate with the 

relative position. Therefore it is expected that the input data values used for the prediction model will 

be (6)–(8). 

𝑋 =  [𝑥𝑏𝑏𝑜𝑥,𝑏𝑠𝑚
𝑡−(ℎ−1)

, . . . , 𝑥𝑏𝑏𝑜𝑥,𝑏𝑠𝑚
𝑡−1 , 𝑥𝑏𝑏𝑜𝑥,𝑏𝑠𝑚

𝑡 ] ,    (6) 

 

𝑥𝑏𝑏𝑜𝑥
𝑡  =  [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡] ,    (7) 

 

𝑥𝑏𝑠𝑚
𝑡  =  [𝑥𝑡 , 𝑦𝑡, 𝜈𝑡, 𝛼𝑡 , 𝜃𝑡, 𝛿𝑡] ,     (8) 

 

where  𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 – coordinates of the bounding box;  

𝑥, 𝑦 – coordinates of the neighboring vehicle relative to host vehicle;  

𝜈, 𝛼, 𝜃, 𝛿 - speed, acceleration, heading, and steering angle, respectively;  

ℎ – time of the trajectory observation. 

The output of the prediction system includes predicted coordinates of the surrounding vehicle  

(9)–(10). 

 

𝑌 =  [𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑡+1 , 𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡+2 , . . . , 𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑡+𝑝 ] ,        (9) 

 

𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑡  = [𝑥, 𝑦] ,      (10) 

 

where  𝑥, 𝑦 – coordinates of the neighboring vehicle relative to host vehicle;  

 𝑝 – prediction time. 

 

6. Research results 

Perception System. 

The use of the random forest algorithm is investigated for the lane change prediction. It is an 

ensemble machine learning method that constructs numerous decision trees during model training 

and produces the mode for the classes (classifications) of the constructed trees through majority 
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voting [15]. Each decision tree has a high variance complexity, but the ensemble reduces variance 

through bagging and lowers the risk of overfitting. The four steps of the algorithm include: 

1. generate random sample with replacement from the dataset: some examples will appear 

multiple times, while approximately one-third of the examples will not be included; 

2. select random input features subset; 

3. construct a decision tree that classifies the examples in the sample; the feature for splitting is 

selected at each node of the tree from a randomly chosen subset of features; the best feature for 

splitting is selected based on the information gain criterion; 

4. repeat steps 1-3 to construct more decision trees. 

In general, the more decision trees in the ensemble, the higher the computational expenses, but 

the better the classifier's performance. If there are factors that significantly affect the results, the 

algorithm provides high classification performance. The driver's intention to change lanes is closely 

related to the vehicle's lateral position, making the lateral movement of the bounding box obtained 

from the camera sensor an important factor in the prediction model. Additionally, steering angle data 

and accurate heading angle obtained through V2V communication are also important factors in lane 

change prediction models. 

Many existing studies consider lane change prediction using machine learning algorithms [16, 

17]. Since the crucial factors can be obtained through the camera and V2V communication, this study 

employs the random forest algorithm to predict the intention of a lane change. 

The lane change process continues for time 𝑑 depending on driver’s behavior and finishes at 

point 𝑇𝑓 at which the vehicle reaches the centerline of the target lane. The start point of the lane 

change 𝑇𝑠 can be determined as the moment that lags behind 𝑇𝑓 by 𝑑, as demonstrated in Figure 6. 

The training data labels are then set accordingly based on the state of the vehicle: lane keeping (0), 

lane change to the left (1), and lane change to the right (2). 

 

 

Figure 6. Lane change process in data labeling. 

Prediction System.  

Machine learning algorithms for supervised learning typically assume that input data is 

independent and identically distributed. However, for vehicle trajectory prediction, the input data is 

presented as a time series which is not independent. Considering this, the proposed trajectory 

prediction model uses a recurrent neural network (RNN) that handles sequentially structured data as 

input. RNNs have a drawback in the form of exponential growth or decay of the gradient for long 

sequences of input data. Therefore a Long Short-Term Memory (LSTM) neural network is usually 

used instead, which is stable and mitigates the typical problems of traditional RNNs [18]. 

The LSTM network consists of LSTM modules – recurrent network modules capable of 

remembering values over both short and long periods. LSTM modules are grouped into blocks. An 

LSTM block contains three gates that control the flow of information at the inputs and outputs of the 

block's memory, determining which part of its memory is retained and which is overwritten. By using 
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these gates, LSTM networks effectively manage long-term dependencies and maintain stable learning 

processes, making them well-suited for the complex task of vehicle trajectory prediction.  

The gates are implemented as logistic functions to calculate values in the range [0,1]. Multiplying 

the signal by these values allows partial allowance or prohibition of the flow at the memory's input 

and output. The three gates are the input gate (𝑖𝑡), the output gate (𝑜𝑡), and the forget gate (𝑓𝑡), 

depicted in Figure 7 [19]. 

 

 
Figure 7. LSTM neural network architecture. 

 

The forget gate 𝑓𝑡 determines which information needs to be forgotten using the current input 

data 𝑥𝑡 and the hidden state from the previous time step ℎ𝑡−1. 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) ,      (11) 

 

where  𝑥𝑡 – input date vector;  

ℎ𝑡−1 – hidden state from the previous time step;  

𝑊𝑓, 𝑈𝑓 – weight matrices of the forget gate for the input and hidden state respectively;  

𝑏𝑓 – bias vector of the forget gate;  

𝜎 – sigmoid activation function. 

The input gate 𝑖𝑡 controls the extent to which new information enters the memory, essentially the 

weight of the new information being received. 

 

𝑖𝑡 =  𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) ,       (12) 

 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) ,           (13) 

 

where  Ĉ𝑡 – proposes a new candidate cell state;  

𝑊𝑖, 𝑈𝑖 – weight matrices of the input gate for the input and hidden state respectively;  

𝑏𝑖 – bias vector of the input gate;  

𝜎 – sigmoid activation function;  

𝑡𝑎𝑛ℎ – hyperbolic tangent activation function. 

The cell state is updated according to equation (14). 

 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × Ĉ𝑡 ,       (14) 

 

where  𝐶𝑡– new cell state;  

𝑓𝑡 – forget gate, determining how much of the previous cell state 𝐶𝑡−1 should be retained;  
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𝑖𝑡 – input gate, determining how much of the new candidate cell state Ĉ𝑡 should be added. 

Then the hidden state ℎ𝑡 is calculated based on the cell state 𝐶𝑡 and the output gate 𝑜𝑡. The output 

gate 𝑜𝑡 controls the extent to which the value stored in the memory is used to compute the block’s 

output activation function. This process is defined by equations (15)–(16). 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 +  𝑏𝑜) ,      (15) 

 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) ,       (16) 

 

where  𝑊𝑜, 𝑈𝑜– weight matrices of the output gate for the input and hidden state respectively; 

ℎ𝑡−1– hidden state from the previous time step;  

𝑏𝑜 – bias vector of the output gate;  

𝜎 – sigmoid activation function;  

𝑡𝑎𝑛ℎ – hyperbolic tangent activation function. 

The memory in an LSTM network is based on a recurrent neural network and is divided into 

encoding and decoding parts [7]. Initially, the input value is received by the encoding part, and a 

corresponding vector is created. During decoding, the obtained vector is used for the recursive 

generation of the output value, as shown in Figure 8. 

 

 
Figure 8. Encoding and decoding components of LSTM. 

 

7. Prospects for further research development 

 

As part of the research, the software code for vehicle trajectory prediction and lane change 

prediction was developed and implemented. Currently, all developed algorithms have been tested on 

a small set of simulated data, confirming their functionality. The next crucial step in the research is 

to collect a dataset to test the developed algorithms in a real environment, which will allow for 

evaluating their effectiveness and accuracy under complex road conditions. 

The further steps include: 

1. collecting and preparing real data for training and testing the models; 

2. evaluating the performance of the developed algorithms on real data; 

3. improving the models based on the results obtained and adapting them to various road 

conditions; 

4. integrating the developed systems into modern autonomous driving platforms to enhance road 

safety and traffic efficiency. 
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8. Conclusions 

 

This work analyzes a vehicle trajectory prediction system that utilizes cameras, laser LiDAR 

scanning, and V2V communication. By utilizing the YOLO algorithm for object detection and 

differential GPS for precise positioning, the proposed system achieves high accuracy in real-time 

vehicle positioning. The additional use of the Random Forest algorithm, an ensemble machine 

learning method that constructs numerous decision trees, allows for predicting the driver's intent to 

change lanes. Meanwhile, the application of the Long Short-Term Memory (LSTM) neural network 

ensures accurate trajectory prediction, enhancing the safety and efficiency of autonomous vehicles. 

This research has laid the foundation for further development in trajectory prediction and lane change 

prediction, which are essential components for the advancement of autonomous vehicles and driver 

assistance systems, particularly collision avoidance systems. 
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