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Abstract: A three-layer plate with thick hard outer layers and a thin soft inner layer was studied. 

A model is considered on the example of an anti-sandwich panel to describe the mechanical behavior 

of a plate on the example of a solar panel. A review of the scientific literature was conducted, in 

which models of both analytical and numerical methods for calculating three-layer plates are 

displayed. The scientific work uses the method of finite element analysis using a spatial shell element, 

as well as the theory of single- and multi-layer plates. These elements combine the topology of 

volumetric elements and the kinematic and structural equations of a classical shell element. Shell 

elements based on continuum mechanics were used for numerical simulation. The study was carried 

out under static load under different conditions, and also the self-oscillations of the anti-sandwich 

were analyzed using the theories of Kirchhoff and Reisner-Mindlin. As part of the scientific work, a 

study of the mechanical model of a thin solar panel was carried out using finite element analysis 

taking into account different temperature conditions and comparing the results with existing studies. 

Keywords: solar panel, anti-sandwich, Kirchhoff theory, Reisner-Mindlin theory, natural 

frequencies, finite element method, ABAQUS. 

 
 
1. Introduction 

 

Nowadays, there is a rapid development of renewable energy sources. Among them, one of the 

most widespread is solar energy. Solar panels are usually subjected to significant loads due to 

changing weather conditions. These can be loads due to wind or precipitation, as well as cyclic daily 

or seasonal temperature changes. This can lead to a violation of the tightness between the layers, the 

formation of cracks in fragile materials and, as a result, to a decrease in efficiency. Therefore, 

modeling and research of the behavior of individual layers, as well as of the entire plate, is a necessary 
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and very relevant issue today [1,2]. In scientific works, solar panels are considered as multilayer 

plates, the study of which is carried out by classical theories. 

 

2. Object and subject of research 
 

The object of the study is an anti-sandwich panel - a three-layer plate with thick, hard outer layers 

and a thin, soft inner layer.  

A typical structure of solar cells consists of outer glass layers and inner soft polymer layers, 

which perform a protective function for very thin and fragile silicon solar panels (Fig. 1) [3-5]. 

   
a       b 

Fig. 1 Structure of a solar panel [2] 

 

This mechanical model describes the typical structure of solar cells, consisting of outer layers of 

glass and inner soft polymer layers that perform a protective function for very thin and fragile silicon 

solar panels. 

There is very little information in the freely available literature regarding the type of solar panel 

fixing. In this regard, the calculation will be carried out in two limiting cases of fastening: rigid 

anchoring and free anchoring, which allows relative displacement of the layers. 

Classic shell elements do not take into account transverse shear, which makes it impossible to 

model the real behavior of the solar panel in the thickness direction. 

 

3. Target of research 

 

The main aim is to study the model of the solar panel using the spatial elements of the shell and 

compare it with the existing results in order to prove the feasibility of using these elements to solve 

similar problems. Thus, there is a need to formulate the main theoretical statements regarding the 

continuum mechanics, on the basis of which two researched approaches are built: the theory of 

multilayer plates and the spatial elements of the shell. It is also relevant to determine the natural 

frequencies of vibration of the plate by classical methods of the theory of oscillations using the finite 

element method.  

One of the research issues is the analysis of the basic theory of the spatial shell element, which 

includes the following points: 

• study of convergence of discretization in order to analyze the accuracy of the results 

• calculation of deflection of the structure in the direction of thickness and movements in planar 

directions 

• study of the structure during the change of the mechanical characteristics of the middle layer 

(change of the modulus of elasticity) 

• comparative analysis of results with LWT results 

• asymptotic analysis in two limiting cases using the Kirchhoff and Reisner-Mindlin theory in 

order to check the correctness of the results. 

• research on the dependence of the natural frequencies of the structure on the change in the 

mechanical characteristics of the middle layer 
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4. Literature analysis 

 

From a mechanical point of view, such a solar panel structure can be considered as a multilayer 

composite with isotropic properties of each layer. Since the solar elements are very thin, and almost 

do not affect the overall stiffness of the entire plate, they can be neglected. Thus, a three-layer thin 

composite with rigid outer layers (glass) and a very thin, soft and shear-yielding inner layer is 

considered. Due to specific geometric and mechanical characteristics, such a mechanical structure 

was called an anti-sandwich [6-8, 14-16]. Thus, the anti-sandwich is a mechanical model that reflects 

the real geometry and is able to describe the mechanical behavior of the solar panel. 

To date, studies of multilayer structures for use in solar cells are presented. For example, in works 

[3, 9, 14-17], three-layer glass beams were investigated based on the theory of laminates and the 

theory of first-order shear deformations (FSDT). 

In work [6], a finite-element analysis of an anti-sandwich panel was performed based on the 

laminate theory (layerwise theory, LWT) with the use of a specially developed finite element. As a 

result, displacement graphs and the dependence of maximum deflections on the modulus of elasticity 

of the middle layer were obtained. 

In the papers [7, 13] at the Department of Mechanics of the Faculty of Mechanical Engineering 

at Otto-von- Gerike University of Magdeburg a new finite element (UEL) based on multilayer theory 

was programmed by [9]. With the help of this element, three-layer plates were calculated under 

different fastening conditions. In order to verify the accuracy of the calculation, the narrow plate was 

investigated using a newly developed element and a classical volume element. In addition, all 

numerical calculations were compared with the analytical LWT solution derived for a three-layer 

plate with a soft inner layer. 

Thus, using these elements, it is possible to automate the process of creating a finite-element 

mesh for arbitrarily complex geometry. This will allow automated parametric calculations of 

arbitrarily complex geometric shapes [11]. 

In [9], asymmetric laminates with a soft inner layer were studied for modeling solar modules. 

The paper shows that there are significant deviations between the results of the LWT and FSDT 

theories for a three-layer beam with asymmetric layers. This indicates that the first-order shear theory 

allows large errors in the calculation results of such structures. 

It has been found that the LWT theory is suitable for the calculation of multilayer structures with 

a very thin and soft inner layer. In works [2, 6-8, 10, 13, 20, 21], its application was extended to the 

calculation of multilayer plates that model the structure of solar panels.  

 

5. Research methods 
 

5.1 Geometry modeling 

 

1) Research was conducted for a three-layer thin anti-sandwich panel, in which the outer layers 

are made of glass, the inner layer is made of soft polymer. The geometric features of this model are 

as follows: 

2) Planar dimensions are much larger than the total thickness: 1,2 3L L  (Fig. 2) 

3) The thickness of the middle layer is very small compared to the thickness of the outer layers:

,c в нh h h  (Fig. 2, table. 1). 
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Fig. 2 Plate structure 

 

 

Table 1. Geometric data [6] 

Parameter Value 

1[ ]L mm  1620 

2[ ]L mm  810 

[ ]вh mm  3,2 

[ ]нh mm  3,2 

[ ]сh mm  1,0 

 

5.2 Materials selection 
 

As already mentioned earlier, solar modules are protected by glass from the outside. Inside is a 

protective polymer layer, which is usually made of ethylene vinyl acetate (Ethylen-Vinylacetat-

Copolymer, EVA). It compensates for various thermal and mechanical deformations and is a sealing 

layer for photocells [6]. 

An important assumption is that each layer is assumed to be isotropic. In addition, the values of 

the mechanical characteristics of the outer layers significantly outweigh the corresponding values of 

the inner layer: н в cE E E=  , н в cG G G=  . Materials data provided in table. 2. 

 

Table 2. Material data [6] 

Parameter Glass EVA 

2E N mm    73000 7,9 

[ ] −  0,3 0,41 

3kg mm     725 10−  
9960 10−  

 

Since the goal is to determine the mechanical behavior of the anti-sandwich under real weather 

conditions, research at different temperatures is important. The research was carried out at the 

following temperatures: under normal conditions (+23 °C), in conditions of elevated (+80 °C) and 

low (-40 °C) temperatures. At the same time, it is assumed that the properties of the outer layers do 

not change depending on the temperature, but only the mechanical characteristics of the material of 

the middle layer change. The corresponding values are given in table. 3. 
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Table 3. Data of the material of the middle layer at different temperatures [6] 

[ ]T C  -40 +23 +80 

2E N mm    1019,04 7,9 0,52 

[ ] −  0,41 0,41 0,41 

 

5.3 Boundary conditions and loads 

 

Solar modules are usually built into an aluminum profile. Since the outer layers are made of 

glass, which is a rather fragile material, direct contact of glass with metal is undesirable, as 

deformation will result in a high stress concentration, which will lead to the formation of cracks and 

destruction. Therefore, a special buffer layer is used between the glass and the aluminum frame, which 

absorbs the difference in deformations and compensates for stress. 

Since there is no detailed information about the buffer layer and its functions, it is assumed in 

the work that all layers of the anti-sandwich can rotate freely at the edges [6, 22]. Therefore, as 

boundary conditions, it is advisable to choose zero displacements of each layer at the edges in the 

thickness direction. 

To simplify the task, a uniform static load was applied in the form of an anti-sandwich pressure 

uniformly distributed over the entire plane, orthogonal to the plane of the surface. When choosing the 

magnitude of the load, it was assumed that the problem is geometrically linear, so the ratio must be 

fulfilled wmax/h<0,5, where wmax – the maximum deflection, h – the total thickness of the anti- 

sandwich. According to [1], the value of the distributed load can vary within the limits 
32,4 10−   

and 
35,4 10−  2

N
mm

. n this problem, the following load was applied 3
20,5 10 Np

mm
−=  . 

 

5.4 Finite element mesh 

 

The finite-element mesh was constructed using spatial shell elements. At the same time, only one 

element was used for the thickness of the layer. The aspect ratio of each element in planar directions 

is equal to one: 1

2

1
e

e

h
AR

h
= = . Thus, the corresponding nodes on the boundaries between the layers 

coincide. Since the behavior of the element in the planar directions and in the thickness direction is 

different, it is important to set the thickness direction, the so-called “stack direction” to the elements 

during discretization. For this, it is necessary to choose the upper and lower surface. The geometric 

model with a finite-element mesh is shown in Fig. 3, in which the lower surface is marked in purple. 
 

 
Fig. 3 Spatial discretization of the plate 
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5.5 Study of convergence of results 

 

The study of the convergence of the results was carried out in order to check the accuracy of the 

finite element calculation. For this, the h-method was used, which consists in increasing the number 

of elements. In this way, several grids with different numbers of elements were generated, on which 

the maximum values of plate deflections were calculated and compared with each other. In each mesh, 

the number of elements increased due to the reduction of their faces, but at the same time the ratio 

was preserved 1AR = . 

Since the goal is to determine the mechanical behavior of the anti-sandwich under real weather 

conditions, research at different temperatures is important. 

Numerical simulations were carried out using the ABAQUS [4] software package at the Faculty 

of Mechanical Engineering at the Otto- von-Guericke University of Magdeburg (Germany). 

To investigate the convergence of the results, six finite-element meshes with different numbers 

of elements were constructed and the values of the maximum deflection of the plate for each mesh at 

different temperatures were compared. The results are shown in the figures (Fig. 4). 

 

 
a 

 
b 
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c 

Fig. 4 The maximum values of deflections of the plate, calculated using different numbers of 

elements at different temperatures: a) +23 °C, b) +80 °C, c) -40 °C 

 

The numerical results of the dependence of the maximum deflection of the plate on the number 

of elements are given in table. 4. 
 

Table 4. The main results of calculations 

№ NE wmax  (T=+23°C) wmax (T=+80°C) wmax (T=-40°C) 

1 150 1,611 3,873 0,7149 

2 486 1,507 3,854 0,7874 

3 1944 1,472 3,823 0,8176 

4 4374 1,459 3,798 0,8201 

5 17496 1,455 3,793 0,8238 

6 39366 1,454 3,79076 0,82407 

 

From the figures and from the table, it is clear that the deviations between the deflections on the 

last two grids (#5 and #6) are very small (less than 5%). This means that the solutions coincide, and 

therefore it is sufficient to use grid 5 for further calculations. 

As can be seen from Fig. 4 and Table. 4, the maximum deflection decreases as the number of 

elements increases. From a physical point of view, this dependence does not correspond to reality, 

since with more elements, the plate should become less rigid. Accordingly, the deflection should 

increase. 

In contrast, at a temperature of -40 °C, the convergence shows physically correct results, i.e., the 

deflection increases as the mesh thickens. 

 

5.6 Change in modulus of elasticity 

 

The dependence of the maximum deflection of the anti-sandwich panel on the modulus of 

elasticity of the middle layer at a given constant load was studied 
3

20,5 10 Np
mm

−=  . At the 

same time, different values of the modulus of elasticity were selected, for each of which the value of 

the maximum deflection was obtained. As in the previous case, the deflection was determined on the 

upper surface of the upper layer. 

Calculations showed that the increase or decrease of the maximum deflection for different grids 

depends on the modulus of elasticity of the middle layer. That is, with a higher modulus of elasticity, 

the deflection of the beam increases with the thickening of the grid. In Fig. 5 shows the results of the 

convergence study at different elastic moduli of the middle layer. 
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Fig. 5 Convergence of deflections of the plate  

at different modulus of elasticity of the middle layer 

 

Thus, a set of points was obtained for which linear interpolation was performed. For clarity, it 

was decided to take a logarithmic scale for the values of the modulus of elasticity (x-axis on the 

graph). 

Comparing with the available results based on extended layerwise theory (Fig. 6), it can be seen 

that the displacement values calculated by continuum shell elements [13, 17, 18, 21] are ten times 

higher than the available ones. 

 
Fig. 6 Dependence of the maximum deflection of the beam on the modulus 

 of elasticity of the middle layer 

 

The graph shows the logarithmic dependence of the maximum deflection of the plate on the 

modulus of elasticity of the middle layer. This dependence reflects the real behavior of the solar 

module at different temperatures. At the same time, different values of the modulus of elasticity 

correspond to different ambient temperatures. At low temperatures, the modulus of elasticity 

increases, that is, the middle layer becomes stiffer, and the entire plate is more uniform. Accordingly, 

the deflection in this case decreases. With a lower modulus of elasticity, that is, at high temperatures, 

on the contrary, the deflection increases. 

Along with temperature loads, solar panels are also subjected to dynamic loads such as wind and 

precipitation in real conditions. Therefore, the study of the solar panel for oscillations is quite an 

interesting and important issue. As part of the work, a study of the natural oscillations of the anti-

sandwich was carried out, namely, the natural frequencies were determined. 

The dependence of natural frequencies on the modulus of elasticity of the middle layer was also 

investigated. So, for example, Fig. 7 shows a graph of the dependence of the first natural frequency 

on the change in the modulus of elasticity. 
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Fig. 7 Dependence of the first natural frequency  

on the modulus of elasticity of the middle layer 

 

5. Research results 

 

In order to prove the expediency of using spatial shell elements, a comparative analysis of the 

results of calculation of deflections, displacements in plane directions and variation of the modulus 

of elasticity of the middle layer by two methods is given: using spatial shell elements and based on 

the LWT laminate theory. 

Although the above approaches allow the behavior of thin laminate plates with a thin and ductile 

inner layer to be predicted with high accuracy, the XLWT elements are not standardized. Therefore, 

the application of these elements is impossible for the general public of engineers. Thus, it is 

necessary to develop and propose alternative methods of modeling this type of structures. It is 

appropriate to consider the possibility of using a special type of standardized finite elements built on 

the basis of the theory of continuum mechanics.  

This study analyzes the possibility of applying such elements to the modeling of anti-sandwich 

panels. It is shown that spatial shell elements (continuum shell elements) (Fig. 8) in the vast majority 

of cases are not only not inferior in accuracy to rather expensive three-dimensional elements, but also 

have a sufficiently high efficiency compared to XLWT elements. Together with the fact that these 

elements are standardized and therefore included in the basic configurations of such a finite element 

package as ABAQUS, the obtained data lead to a logical conclusion about the high potential of spatial 

shell elements for modeling the strength and vibration characteristics of solar panels.  

 
Fig. 8 The maximum deflection of the anti-sandwich panel for different values of the modulus of 

elasticity of the middle layer when applying spatial shell elements (blue) and the XLWT theory 

(red) 
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Fig. 8 shows that the convergence of the results of both theories is quite high. This shows that 

the model used in this problem adequately describes the behavior of solar cells. 

The distribution of deflections in both cases is symmetrical (Fig. 9), the same trend occurs (the 

deflection increases with increasing temperature). On the one hand, this indicates the correctness of 

the calculations. However, it should be noted that the values of deflections when using spatial shell 

elements are 10 times higher than the values of XLWT deflections. 
 

 
Fig. 9 Plate deflections at different temperatures when using continuum shell elements (left) and 

extended layerwise theory (right) 

 

Preliminary calculations showed deviations between the results. Therefore, there is a need to 

check the correctness of the performed calculations with the use of spatial shell elements. Since it is 

not possible to carry out an exact analytical calculation of the anti-sandwich, it is only possible to 

carry out calculations in such extreme cases, in which the behavior of the plate can be accurately 

predicted, i.e. carry out the so-called asymptotic analysis. 

The assumption that the properties of the middle layer change depending on the temperature is 

considered. Thus, we can say that there is such a limiting value of the modulus of elasticity, when the 

middle layer acquires the same properties as the outer layers (Ес=Езовн). In this case, the entire plate 

becomes homogeneous and shear-rigid, and thus can be calculated according to Kirchhoff's theory 

for shear-rigid thin uniform plates. The second limiting case is the opposite of this, i.e. it is assumed 

that the properties of the outer layers coincide with the properties of the inner layer (Езовн=Ес). In this 

case, the plate is uniform and susceptible to shear, and is subject to calculation according to the 

Mindlin-Reissner theory for soft uniform plates, taking into account transverse shear. So, let's 

consider two extreme cases in detail: a shear-rigid plate (Kirchhoff theory) and a shear-yielding plate 

(Mindlin-Reisner theory). 

In both cases, a homogeneous isotropic plate is considered, that is, all layers consist of the same 

material (in this case, glass or EVA). 

As part of this analysis, in both cases, the values of displacements in the direction of thickness 

(deflection) were obtained. The results of the analytical calculations were compared with the results 

of the corresponding numerical calculations. All equations for analytical calculations were taken from 

[16]. 

In the first limiting case, a homogeneous rigid plate was considered. The main assumptions and 

derivation of the plate equation according to the Kirchhoff theory are given in [16]. The solution of 

the equation is given in the form of a double Navier row [16]: 

( ) ( ) ( )1 2 1 2

1 1 1 2

, sin sin , ,mn m n m n

m n

m n
w x x w x x

l l

 
   

 

= =

= = =  (1) 

This solution satisfies all boundary conditions in the case of a rectangular isotropic hinged plate 

not loaded with moments. If we decompose the load q(x1,x2) into a sine double row 
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( ) ( ) ( )1 2 1 2

1 1

, sin sinmn m n

m n

q x x q x x 
 

= =

=     (2) 

where  

( ) ( ) ( )
1 2

1 2 1 2
0 0

1 2

4
, sin sin

l l

mn m nq q x x x x
l l

 =      (3) 

and substituting into the general solution and equating the coefficients, we obtain the general form of 

the solution for a rectangular plate [16]: 

( )
( )

( ) ( )1 2 1 22 2
1 1

1
, sin sinmn

m n

m n m n

q
w x x x x

K
 

 

 

= =

=
+

    (4) 

With 

0

2

16
, , 1,3,5...mn

q
q m n

mn
= =      (5) 

Thus, equation (4) can be used to calculate the first limiting case of the anti-sandwich. At the 

same time, it is considered that the plate is homogeneous, that is, all three layers are made of glass: 

Е=Ес=Ев=Ен=
373 10 MPa , ν=νс=νв=νн=0,3, 

7
325 10с в н

kg
mm

    −= = = =  ; plate thickness 

7,4с в нh h h h mm= = = = , planar dimensions 1 1620l mm= , 2 810l mm= ; distributed load 

6
20 0,25 10 Nq p

mm
−= =  . 

In this case, the load is taken much less than when calculating the anti-sandwich. This is done in 

order to fulfill the condition of applying Kirchhoff's theory w/h≤0,5 (because in this case the plate 

will be much more flexible). 

In the second limiting case, a shear-yielding plate was considered, for the calculation of which 

the non-classical theory of Mindlin-Reissner plates was applied [16]. 

We get the deflection equation after integration: 

( )
( ) ( ) ( )2 2

1 22
2 2

1 1

1
1 sin sinmn

m n m n

m n sm n

q K
w x x

K Gh
   

 

 

= =

 
= + + 

+  
   (6) 

Taking into account 

3

212(1 )

Eh
K


=

−
 and 

2(1 )

E
G


=

+
, we have 

2

5(1 )s

K h

Gh 
=

−
. 

The equations of the Reisner theory were applied in the calculation of the anti-sandwich panel in 

the second extreme case. At the same time, it is considered that the plate is homogeneous and consists 

entirely of EVA polymer: Е=Ев=Ен=Ес=7,9 MPa , ν=νс=νв=νн=0,41, 

9
3960 10с в н

kg
mm

    −= = = =  ; plate thickness 7,4с в нh h h h mm= = = = , planar dimensions 

1 1620l mm= , 2 810l mm= ; distributed load 6
20 0,25 10 Nq p

mm
−= =  . 

 As a result of analytical calculations based on the theory of rigid Kirchhoff plates and the theory 

of flexible Reisner-Mindlin plates, the following maximum values of deflections were obtained: 

wK = 4,2272·10-4 mm  and wR-M = 3,5722 mm. 

In order to confirm the correctness of the results, along with the analytical solution, a numerical 

calculation was also carried out using the spatial elements of the shell in two limiting cases. A study 

of the convergence of the results was also conducted (Fig. 10), the maximum values of deflections 

on the densest grid (grid 7) were calculated. The parameters of all grids and the corresponding 

deflection values are given in table 5. In table 6, the corresponding results of the analytical and 

numerical solution are compared, and the error is also determined. 
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a       b 

Fig. 10 Study of convergence of results according to Kirchhoff (a) and Reisner (b) 

 

Table 5. Parameters of the mesh into finite elements for the numerical calculation of limit cases 

Mesh NE 
Element side length 

he [mm] 
wK 

410−  

[mm] 
wR [mm] 

1 50 162 3.718 3.141 

2 162 90 3.933 3.322 

3 648 45 4.021 3.396 

4 3321 30 4.029 3.402 

5 5832 15 4.034 3.407 

6 13122 10 4.036 3.408 

7 52488 5 4.039 3.41 

 

Table 6. Results of calculations in limiting cases with static loading of the plate 

Parameter Kirchhoff Reisner-Mindlin 

wan [mm] 
44,2272 10−  3,5722 

wnum [mm] 
44,039 10−  3,41 

δ [%] 4,45 4,54 

Table 6 shows that the error between the analysis and the numerical solution for both cases is 

less than 5%. This suggests that the numerical solution is correct, that is, the spatial shell elements 

are suitable for the calculation of this design.  

For verification, it was decided to calculate the deflections value of the anti-sandwich panel for 

different values of the modulus of elasticity of the middle layer under load 6
20,25 10 Np

mm
−=  , 

which corresponds to the load that was applied for the calculation of limit cases. The results are shown 

in Fig. 11: 
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Fig. 11 Maximum values of deflections for different mechanical properties of the middle layer 

under load 6
20,25 10 Np

mm
−=   

 

As can be seen from the figure, the values of the deflections of the anti-sandwich (blue line) lie 

within the limits of the values for the limit cases, if compared with table 6. Thus, the expediency of 

using spatial shell elements for modeling the mechanical behavior of the anti-sandwich under various 

conditions is proven. 

As part of the scientific work, the deformed state of a three-layer plate was analyzed using finite 

element analysis using a spatial shell element. This element is based on the first-order shift theory 

[4]. In addition, calculations were carried out in the limiting cases of a rigid and shear-yielding thin 

plate according to the theory of Kirchhoff and Mindlin-Reisner. 

As for the theories of multilayer plates, the paper compared the results obtained on the basis of 

the spatial shell element with the results obtained according to the theory of multilayer plates. 

Calculations were carried out according to two theories: Kirchhoff and Reisner-Mindlin theory. 

Determination of natural frequencies according to both theories was carried out according to [2]. 

When calculating the natural frequencies according to the first theory, a homogeneous 

rectangular plate hinged to shear was considered (Еo=Еm=Еl) with dimensions 

1620mmх810mmх7,4mm. 

All three layers of the anti-sandwich are rigid and have the mechanical properties of glass: 

 Е = Ес = Ев = Ен = 
373 10 MPa , ν = νс = νв = νн = 0.3, 

7
325 10с в н

kg
mm

    −= = = =  . 

According to Kirchhoff's theory, the first 9 natural frequencies were determined 
2 2

2

2 2

1 2

, , 1,2,3...mn

m n K
m n

l l h
 



 +
= = 

+ 
    (7) 

The results of calculations according to the first theory are given in table. 7. 

 

Table 7. Natural frequencies of the plate (Kirchhoff theory) 

№ fan fnum δ [%] 

f1 1,1457 1,1432 0,22 

f2 1,8332 1,8271 0,33 

f3 2,9789 2,9691 0,33 

f4 3,8956 3,8900 0,14 
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Continued of Table 7 

f5 4,583 4,5692 0,29 

f6 4,583 4,5692 0,29 

f7 5,7288 5,7035 0,44 

f8 6,6454 6,6267 0,28 

f9 7,3328 7,2942 0,53 

 

When using the Reisner-Mindlin theory, the natural frequencies were determined for a shear-

yielding hinged homogeneous rectangular plate (Еo=Еm=Еl) with dimensions 

1620mmх810mmх7,4mm. 

Eigenfrequencies were determined using the following formula 

2

1

1

K

mn mn Q

mn

 


=
+

 ,     (8) 

where ( )2 2 2Q

mn m n

s

K

Gh
  = +  - shift correction factors, 

K

mn  - the natural frequency of vibration 

according to the Kirchhoff theory.  

All layers are assumed to be made of EVA material: Е=Ев=Ен=Ес=7,9MPa, ν=νв=νн=νс=0.41, 

9
3960 10с в н

kg
mm

    −= = = =  . 

The obtained values of natural frequencies are shown in the table. 8. 

 

Table 8. Natural frequencies of the plate (Reisner-Mindlin theory) 

№ fan fnum δ [%] 

f1 2,0111·10-2 2,00768·10-2 0,17 

f2 3,2166·10-2 3,20889·10-2 0,24 

f3 5,2245·10-2 5,21436·10-2 0,19 

f4 6,828·10-2 6,8299·10-2 0,03 

f5 8,0303·10-2 8,02345·10-2 0,085 

f6 8,0303·10-2 8,02345·10-2 0,085 

f7 0,1003 0,10016 0,14 

f8 0,1164 0,11635 0,04 

f9 0,1283 0,12809 0,16 

 

In both limit cases, slight errors are observed between the numerical and analytical values (table. 

7, 8), which indicates that the shell spatial elements are used correctly and give quite accurate 

solutions also in the dynamics analysis. This is also evidenced by the fact that the value of the first 

natural frequency of oscillations, calculated for the anti-sandwich, lies within the limits defined by 

the limiting cases of Kirchhoff and Reisner-Mindlin theories. 

 

6. Prospects for further research development 

 

In future research related to solar cells, forced oscillations caused by possible dynamic loads, 

such as precipitation, wind currents, etc., are of considerable interest, and it is reasonable to calculate, 

along with the natural frequencies, also the natural forms of the oscillations. They carry information 

about what shape the structure will have if a force is applied to it with a frequency equal to the 
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corresponding natural frequency of oscillation. It is planned to determine the eigenforms of 

oscillations analytically and numerically with the use of spatial shell elements in two limiting cases: 

a rigid plate (Kirchhoff theory) and a shear-yielding plate (Mindlin-Reisner theory). 

 

7. Conclusion 

 

The type of finite element suitable for solving this problem is selected. 

The study of the solar panel using finite element analysis with the use of spatial elements of the 

shell is given in the paper. A model (anti-sandwich) was used, which adequately describes the 

mechanical behavior of the solar panel, which is a three-layer plate with relatively thick and rigid 

outer layers and a thin and flexible inner layer. 

An analytical and numerical calculation of the natural frequencies of vibration in the limit cases 

of a homogeneous plate was carried out in order to verify the correctness of the numerical calculations 

under static load conditions. The obtained results have a high correlation, and also showed that the 

frequencies calculated for the anti-sandwich are within acceptable limits. 
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