

International Science Journal of Engineering & Agriculture
2024; 3(6): 117-129

https://isg-journal.com/isjea

doi: 10.46299/j.isjea.20240306.12

ISSN: 2720-6319

Secure authentication in e-government 2.0: a comparative analysis of traditional

session-based and modern jwt-based authentication

Ilgar Shikhverdiyev

Baku Turkish Anatolian High School, Baku, Azerbaijan

ORCID 0009-0005-7062-506X

Elchin Babayev

Laboratory of nanostructured metal-polymer catalysts, Institute of Catalysis and Inorganic

Chemistry, Baku, Azerbaijan

ORCID 0009-0004-8602-9951

Ceyhun Rahimli

Azerbaijan Technical University, Baku, Azerbaijan

ORCID 0009-0000-4779-5021

Nargiz Rahimli

Laboratory of nanostructured metal-polymer catalysts, Institute of Catalysis and Inorganic

Chemistry, Baku, Azerbaijan

ORCID 0000-0003-4097-7302

Hacar Aslanova

Laboratory of nanostructured metal-polymer catalysts, Institute of Catalysis and Inorganic

Chemistry, Baku, Azerbaijan

ORCID 0000-0002-5579-1802

To cite this article:

Shikhverdiyev Ilgar, Babayev Elchin, Rahimli Ceyhun, Rahimli Nargiz, Aslanova Hacar. Secure

authentication in e-government 2.0: a comparative analysis of traditional session-based and modern

jwt-based authentication. International Science Journal of Engineering & Agriculture. Vol. 3, No. 6,

2024, pp. 117-129. doi: 10.46299/j.isjea.20240306.12.

Received: 10 21, 2024; Accepted: 11 20, 2024; Published: 12 01, 2024

Abstract: In the era of e-Government 2.0, the security of web applications is paramount,

particularly in terms of user authentication. This article provides a comprehensive examination of two

primary authentication methods: session-based authentication and JSON Web Token (JWT)-based

authentication. It begins by discussing the foundational aspects of secure authentication, emphasizing

its importance in e-Government platforms. The article then delves into the mechanics of session-

based authentication, highlighting its reliance on server-side session management and the associated

challenges. In contrast, JWT-based authentication is explored in depth, showcasing its stateless

nature, structure, and the advantages of using access and refresh tokens in theory and also in practice.

Through a detailed code example in Express.js, the article demonstrates the implementation of JWT-

based authentication in a web application. The analysis concludes by summarizing the benefits of

JWT, including enhanced security, scalability, and improved user experience, making it a suitable

choice for modern e-Government applications.

Keywords: Information society public services, Website, e-Government 2.0, interactive services

authentication.

118 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

1. Introduction

In the digital age, the shift towards e-Government 2.0 represents a transformative evolution in

how governments interact with citizens, businesses, and other entities. This new paradigm leverages

advanced web technologies to offer a wide array of public services online, aiming to enhance

accessibility, efficiency, and transparency. However, with the increasing reliance on web-based

platforms for critical governmental functions comes an escalating need for robust security measures,

particularly in the realm of authentication [8,13]. Secure

authentication is the linchpin of any secure web application, serving as the gateway to sensitive

information and services. In the context of e-Government 2.0, where web applications handle vast

amounts of personal data, financial transactions, and confidential communications, the stakes are

exceedingly high. Ensuring that only authorized individuals can access these services is paramount

to maintaining public trust and safeguarding national security [2,7].

The importance of secure authentication in e-Government 2.0 can be illustrated through several

key aspects:

Protection of Sensitive Data: Government websites often store and process sensitive

information, including personal identification details, tax records, social security numbers, and health

information. Robust authentication mechanisms prevent unauthorized access to this data, mitigating

risks of identity theft, fraud, and privacy breaches.

Maintaining Public Trust: Citizens must have confidence that their interactions with

government services are secure. Any security breach, particularly one involving authentication, can

severely undermine public trust in digital government initiatives. Secure authentication practices help

build and maintain this trust, which is crucial for the widespread adoption of e-Government services.

Preventing Fraud and Misuse: Effective authentication prevents unauthorized individuals from

exploiting government services for fraudulent purposes, such as falsely claiming benefits,

manipulating records, or accessing restricted information. By ensuring that only legitimate users can

access services, governments can reduce the incidence of such fraudulent activities.

Compliance and Regulatory Requirements: Governments are often subject to stringent

regulatory frameworks that mandate specific security standards for handling and protecting data.

Implementing secure authentication mechanisms is a critical component of complying with these

regulations and avoiding legal and financial penalties [10,11,18,].

As e-Government 2.0 continues to evolve, the challenge of securing web applications grows

increasingly complex. This evolving complexity of securing web applications necessitates adopting

advanced, scalable authentication mechanisms suitable for high-demand, distributed government

systems.

2. Object and Subject of the Study

The object of this study is the authentication mechanisms utilized in e-Government 2.0 systems,

focusing specifically on how these mechanisms affect the security, efficiency, and user experience of

digital government platforms. The subject of the study is a comparative analysis between traditional

session-based authentication and modern JSON Web Token (JWT)-based authentication models,

with a particular emphasis on their implications for security and scalability in government

applications. This comparison centers on evaluating each model’s resilience to critical security

threats, such as identity theft, cross-site request forgery (CSRF), cross-site scripting (XSS), and

session hijacking, while also assessing their compatibility with high-volume, distributed

architectures. Special attention is given to each model's potential to manage token invalidation,

mitigate server load, and minimize public trust risks, which are paramount to the integrity of modern

e-Government systems.

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 119

3. Purpose and Objectives of the Study

The purpose of this study is to systematically analyze and evaluate the security, scalability, and

feasibility of session-based and JWT-based authentication models within the framework of e-

Government 2.0, with the aim of identifying the most effective approach for secure and reliable user

authentication in government applications.

The specific objectives of the study are as follows:

1. To assess the security risks associated with session-based and JWT-based authentication in e-

Government applications, focusing on potential attack vectors and vulnerabilities.

2. To compare the two authentication models regarding their effectiveness in protecting sensitive

data, ensuring the integrity of transactions, and maintaining public trust.

3. To provide practical implementation insights through Node.js more specifically Express.js

code snippets, showcasing real-world examples of how each model is implemented and highlighting

security measures for preventing common security issues.

4. To evaluate the scalability and performance of each model in high-demand, distributed

environments typical of e-Government services.

5. To suggest recommendations for selecting and optimizing authentication mechanisms based

on security needs, compliance requirements, and operational constraints in government contexts.

By addressing these objectives, this study aims to offer a clear, evidence-based foundation for

the adoption of robust authentication mechanisms in e-Government platforms, enhancing both user

trust and operational security.

4. Literature Analysis

In recent years, the demand for robust and scalable authentication systems has intensified across

various digital platforms, from commercial applications to e-Government services. Literature on this

topic highlights several critical areas of concern, particularly surrounding user information security,

vulnerabilities in web-based systems, and the emerging need for efficient, low-overhead

authentication methods. This section synthesizes findings from recent studies to analyze key

challenges and developments in session-based and JWT-based authentication, especially as they

relate to e-Government 2.0 platforms.

4.1. JWT-Based Authentication for Reduced Server Overhead and Enhanced Security

JWT (JSON Web Token) is increasingly recognized for its role in modernizing authentication

practices, particularly by reducing server dependency and enhancing scalability. According to the

first study, JWT is instrumental in minimizing server overhead by lowering the frequency of database

calls, managing token storage, and enabling automatic token refresh mechanisms. Furthermore, the

study emphasizes the importance of secure token invalidation techniques, especially during logout or

potential data breaches, underscoring JWT’s adaptability in environments where reduced server load

and enhanced control over token security are priorities. This finding is particularly relevant in e-

Government contexts, where the ability to handle high user volumes without significant infrastructure

strain is essential for smooth and scalable service delivery.

4.2. Security Challenges in e-Government Systems and the Impact of Cyber-Attacks

As the use of e-Government systems expands globally, so do the associated risks, with cyber-

attacks posing a notable threat to the integrity of these platforms. The second study provides a

comprehensive review of cyber-attacks impacting e-Government systems, suggesting that increased

digital interconnectedness also amplifies system vulnerabilities. Notably, the study finds that cyber-

attacks can undermine public trust, making security a top priority for digital governance frameworks.

https://isg-journal.com/isjea/index

120 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

The review, covering a fifteen-year period, highlights the evolving landscape of cybersecurity threats

and the necessity for more rigorous protection mechanisms in e-Government systems, where trust

and reliability are essential for citizen engagement and system effectiveness.

4.3. CSRF Mitigation Strategies in JavaScript Frameworks

JavaScript frameworks are at the forefront of web application development, playing a pivotal

role in shaping application security practices. The third study analyzes several prominent server-side

JavaScript frameworks—Express.js, Koa.js, Hapi.js, Sails.js, and Meteor.js—specifically examining

how they address Cross-Site Request Forgery (CSRF) vulnerabilities. By conducting a thorough

analysis using static security tools, the study evaluates the extent of CSRF mitigation across

applications built with these frameworks. Results indicate that security measures vary significantly

among frameworks, influencing developers’ ability to produce secure applications. The study’s

recommendations suggest that framework developers can help prevent security vulnerabilities like

CSRF through more standardized and comprehensive mitigation strategies. These insights highlight

the importance of both framework design and developer practices in achieving secure authentication

systems, especially for government applications where security and user data protection are

paramount.

4.4. Critical Web Application Security Threats: XSS and Defensive Mechanisms

Cross-Site Scripting (XSS) vulnerabilities present a significant security risk to web applications,

particularly those handling sensitive user information. The fourth study provides an extensive review

of XSS as a critical and pervasive security threat, exploring both the mechanisms by which XSS

attacks are executed and the defensive measures available to mitigate these risks. This study

emphasizes the danger posed by XSS in high-value applications—such as e-commerce, healthcare,

and banking—which are frequently targeted by malicious actors. Defensive mechanisms, such as

input validation, content security policies, and secure coding practices, are recommended to protect

applications from unauthorized data access. Given the sensitive nature of information in e-

Government applications, the findings from this study underscore the necessity of adopting proactive

security measures to prevent data breaches and enhance user trust in digital governance systems.

4.5. The Role of HTTPS in Secure Authentication

HTTPS plays a fundamental role in maintaining secure communication channels, particularly

when dealing with sensitive user information like login credentials. This protocol ensures that data

transmitted between client and server is encrypted, mitigating risks of interception or tampering.

However, HTTPS is a stateless protocol, meaning that each request is treated independently, with no

memory of previous interactions. While this design choice enhances scalability and resource

management by avoiding server load associated with maintaining session state, it poses challenges

for applications that rely on stateful interactions, such as user sessions. To manage these limitations,

secure authentication mechanisms, like JWT and session cookies, often supplement HTTPS by

handling stateful aspects independently. The reviewed literature emphasizes HTTPS as a foundational

layer for secure interactions, complemented by advanced authentication strategies to ensure both

security and scalability in complex e-Government systems [9,15].

Synthesis of Findings

The reviewed literature collectively emphasizes that as web-based applications evolve, so too

must the approaches to authentication and security. JWT-based authentication is emerging as a viable

alternative to traditional session-based models, particularly in contexts requiring scalability and

reduced server load. However, the inherent risks associated with token storage and invalidation

remain an active area of research. Additionally, cyber-attacks present a substantial threat to e-

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 121

Government systems, where maintaining public trust is crucial. The literature suggests that while

advancements in security practices—such as CSRF and XSS prevention—are being integrated into

modern frameworks and application design, there remains a pressing need for ongoing research and

the adoption of adaptive, secure authentication methodologies in the realm of e-Government.

5. Research Methods

To provide a comprehensive understanding of secure authentication in practice, this study

incorporates hands-on implementations of both session-based and JWT-based authentication in

Node.js. Through practical code examples, each authentication model is examined in a real-world

context, demonstrating configurations for secure session handling, token management, and protection

against security threats common in e-Government applications.

Session-Based Authentication.

Session-based authentication addresses the stateless nature of HTTP by providing a mechanism

to maintain state across multiple requests. When a user logs in to a web application, the server creates

a session and associates it with the user. This session is then used to track the user's authenticated

state across subsequent requests.

To understand how Session-based authentication is implemented, we explored its usage on the

server side of the application using JavaScript, specifically with the Express framework based on

Node.js.

(Implementation details are explained in the code as comments)

const User = require('../model/User');

const session = require('express-session');

const MongoStore = require('connect-mongo');

const bcrypt = require('bcrypt'); // For secure password comparison

// Initialize session middleware for managing user sessions

// - `secret`: A string used to sign the session ID cookie for security purposes.

// - `resave`: Ensures that sessions are only saved if modified, reducing unnecessary database

writes.

// - `saveUninitialized`: Prevents uninitialized sessions (sessions with no data) from being stored.

// - `store`: Specifies MongoDB as the storage option, which maintains sessions after server

restarts.

// - `cookie`: Configures cookie properties like expiration time, security, and accessibility settings.

const sessionMiddleware = session({

 secret: process.env.SESSION_SECRET,

 resave: false,

 saveUninitialized: false,

 store: MongoStore.create({

 mongoUrl: process.env.MONGO_URI,

 collectionName: 'sessions' // MongoDB collection where sessions are stored

 }),

 cookie: {

 maxAge: 1000 * 60 * 60 * 24, // Session expires after 1 day (in milliseconds)

 httpOnly: true, // Ensures cookie is accessible only by the web server

 secure: process.env.NODE_ENV === 'production', // Enables HTTPS-only cookies in

production

 sameSite: 'strict' // Prevents CSRF by restricting cookie use to same-origin requests

 }

https://isg-journal.com/isjea/index

122 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

});

// Login handler function for authenticating users with sessions

// - Receives username and password from request body and validates them against the database.

// - If authentication is successful, creates a session storing user data, accessible on future requests.

const handleLogin = async (req, res) => {

 const { user, pwd } = req.body; // Extracts username and password from request body

 if (!user || !pwd) {

 return res.status(400).json({ 'message': 'Username and password are required.' }); // Validation

error

 }

 // Finds user in the database based on username

 const foundUser = await User.findOne({ username: user }).exec();

 if (!foundUser) {

 return res.sendStatus(401); // Unauthorized response if user not found

 }

 // Securely compares submitted password with stored hashed password using bcrypt

 const match = await bcrypt.compare(pwd, foundUser.password);

 if (match) {

 // Creates a session if login is successful, storing user details like ID, username, and roles

 req.session.user = {

 id: foundUser._id,

 username: foundUser.username,

 roles: foundUser.roles // Stores user roles for authorization checks

 };

 res.json({ message: 'Login successful!' }); // Confirms successful login

 } else {

 res.sendStatus(401); // Unauthorized if password doesn't match

 }

};

// Middleware function to check if the user is authenticated

// - Ensures only authenticated users can access protected routes by checking session data.

// - Proceeds to the next middleware/route if session exists, otherwise returns Unauthorized.

const isAuthenticated = (req, res, next) => {

 if (req.session?.user) {

 next(); // User is authenticated, proceed to the next middleware

 } else {

 res.sendStatus(401); // Unauthorized if no session exists

 }

};

// Logout handler to destroy user session and clear session cookie

// - Ensures session data is removed from MongoDB and session cookie is cleared from the client.

const handleLogout = (req, res) => {

 req.session.destroy(err => {

 if (err) {

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 123

 return res.status(500).json({ 'message': 'Failed to log out.' }); // Server error on logout

failure

 }

 res.clearCookie('connect.sid'); // Clears the session cookie from the client side

 res.json({ message: 'Logout successful!' }); // Confirms successful logout

 });

};

// Exporting functions and middleware for use in other parts of the application

module.exports = { sessionMiddleware, handleLogin, isAuthenticated, handleLogout };

In this code snippet, the session ID cookie should be marked as HttpOnly and Secure to prevent

access via JavaScript and ensure it is only sent over HTTPS, respectively.(httpOnly: true, // Not

accessible by JavaScript)

JWT-based authentication code implementation

Now, let's take a look at an example of implementing login with JWT authentication using the

Express framework.

// Importing required modules

const User = require('../model/User');

const jwt = require('jsonwebtoken');

// Asynchronous function to handle user login

const handleLogin = async (req, res) => {

 // Extract cookies from the request, if any

 const cookies = req.cookies;

 // Extract username and password from request body

 const { user, pwd } = req.body;

 // Validation: If either field is missing, return HTTP 400

 if (!user || !pwd) return res.status(400).json({ 'message': 'Username and password are required.'

});

 // Check if a user with the provided username exists in the database

 const foundUser = await User.findOne({ username: user }).exec();

 // If user not found, return HTTP 401 Unauthorized

 if (!foundUser) return res.sendStatus(401);

 // Direct comparison of the plaintext password with the stored password (for demo purposes

only; hashing should be used in production)

 const match = pwd === foundUser.password;

 if (match) {

 // If passwords match, retrieve user roles, filtering out any falsy values

 const roles = Object.values(foundUser.roles).filter(Boolean);

 // JWT Creation: Access Token

 const accessToken = jwt.sign(

 {

https://isg-journal.com/isjea/index

124 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

 "UserInfo": {

 "username": foundUser.username, // Embeds username and roles in the token

 "roles": roles

 }

 },

 // Secret key for signing the token

 process.env.ACCESS_TOKEN_SECRET,

 // Short-lived token for enhanced security (expires in 60 seconds)

 { expiresIn: '60s' }

);

 // JWT Creation: Refresh Token

 const newRefreshToken = jwt.sign(

 // Only the username is embedded in the refresh token for a lighter payload

 { "username": foundUser.username },

 process.env.REFRESH_TOKEN_SECRET, // Secret key for signing the refresh token

 { expiresIn: '1d' } // Refresh token valid for 1 day

);

 // If there is an existing refresh token in cookies, filter it out from the user's stored tokens

 let newRefreshTokenArray =

 !cookies?.jwt

 ? foundUser.refreshToken // If no cookie token is found, retain all refresh tokens

 : foundUser.refreshToken.filter(rt => rt !== cookies.jwt); // Remove existing token to

avoid duplication

 // If a refresh token cookie exists, clear it and check if it was stored in the database (indicating

reuse)

 if (cookies?.jwt) {

 const refreshToken = cookies.jwt;

 const foundToken = await User.findOne({ refreshToken }).exec();

 // Token reuse detection: If the cookie token is absent in the database, clear all refresh

tokens

 if (!foundToken) {

 newRefreshTokenArray = []; // If token reuse detected, empty the refresh token array

 }

 // Clear the existing refresh token cookie

 res.clearCookie('jwt', { httpOnly: true, sameSite: 'Strict' });

 }

 // Save the new refresh token in the user's token array in the database

 foundUser.refreshToken = [...newRefreshTokenArray, newRefreshToken];

 const result = await foundUser.save();

 // Send the new refresh token in a secure, HTTP-only cookie to the client

 res.cookie('jwt', newRefreshToken, { httpOnly: true, secure: true, sameSite: 'Strict', maxAge:

48 * 60 * 60 * 1000 });

 // Send the access token back in the JSON response, allowing client to use it for authorization

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 125

 res.json({ accessToken });

 } else {

 // If passwords do not match, respond with HTTP 401 Unauthorized

 res.sendStatus(401);

 }

}

// Export the handleLogin function for use in routing or controllers

module.exports = { handleLogin };

Also in this code snippet, the specific attributes (httpOnly, secure, sameSite, and maxAge) ensure

that the refresh token is stored and transmitted securely, mitigating risks such as XSS and ensuring

compatibility with cross-site requests [4].

The code implementations in both cases demonstrate the practical deployment of each approach,

setting a foundation for evaluating real-world efficacy in secure data handling and user session

management. This dual approach aims to offer a nuanced understanding of how traditional session-

based mechanisms compare with JWT in terms of performance, security, and user management—a

critical assessment for advancing secure authentication practices in e-government platforms.

In the following section, the advantages and disadvantages of each method will be analyzed,

focusing on scalability, vulnerability to specific threats, user experience and their alignment with

evolving requirements of e-government 2.0 environments.

6. Research results

This study has evaluated two primary authentication methods—session-based and JWT-based

authentication—within the context of e-Government 2.0, with particular emphasis on security,

scalability, control, and user experience. The following results summarize the key distinctions and

considerations that emerged from implementing and analyzing each approach.

6.1 Session-Based Authentication

Implementation Simplicity and Control:

Session-based authentication is known for its straightforward implementation, particularly within

traditional server-side frameworks. This simplicity makes it a preferred choice for developers, as it

requires minimal configuration and leverages established methods within the framework for session

handling.

Additionally, this approach offers a significant degree of control to the server. Since session data

is stored on the server side, administrators retain full authority over session lifecycle management.

This includes the ability to invalidate sessions selectively, monitor session activity, and apply security

policies in real time. These control features are particularly beneficial in environments where security

compliance or dynamic access control is critical.

While session-based authentication is simple and straightforward to implement, it has inherent

limitations, especially in terms of scalability and security.

Scalability Issues and user experience

Storing sessions on the server can become problematic in distributed systems or high-traffic

applications which can impact performance and user experience in these scenarios. Since it requires

session data synchronization across multiple servers. This can lead to several challenges:

https://isg-journal.com/isjea/index

126 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

Load Balancing: In a load-balanced environment, where multiple servers handle requests,

ensuring that a user’s session data is available to whichever server handles their request is crucial.

Session Stickiness: One common workaround is implementing session stickiness (also known as

"sticky sessions" or "session affinity"), where a load balancer routes a user's requests to the same

server. This approach, however, has significant drawbacks:

It reduces the effectiveness of load balancing and fails to handle server failures gracefully, as

sessions are tied to specific servers.

Centralized Session Storage: Another workaround is using a centralized session storage solution,

such as a database or a distributed cache like Redis or Memcached, to store session data. But this

introduces additional complexity in managing and maintaining the session store. It also creates a

single point of failure and potential performance bottleneck, which can impact the overall scalability

and reliability of the application [5].

Vulnerability to CSRF

Cross-Site Request Forgery (CSRF) attacks exploit the fact that the browser automatically

includes cookies in requests. Proper CSRF mitigation strategies must be implemented to protect

against such attacks. One effective workaround is to use anti-CSRF tokens. These tokens are unique

to each session and must be included in every form submission or state-changing request. But

implementing and managing anti-CSRF tokens adds to the development complexity. Developers must

ensure that tokens are correctly generated, included in forms, and validated on the server-side.

Mistakes in this process can lead to vulnerabilities or functional issues. As another workaround,

setting the SameSite attribute on cookies can mitigate CSRF risks by restricting how cookies are sent

with cross-site requests. While this reduces CSRF risks, it may affect legitimate cross-site

interactions, such as third-party integrations, and requires thorough testing to ensure it does not break

existing functionality [14].

6.2 JWT-Based Authentication

Security:

JWT-based authentication provides a stateless mechanism that eliminates the need for server-

side session storage, thus reducing the risk of certain attacks, such as session hijacking and server-

side session fixation. This stateless nature also simplifies server management, as JWT tokens are self-

contained and include all necessary claims and permissions, allowing for easy token validation

without reliance on stored session data. Additionally, the common use of access and refresh tokens

further enhances security by limiting the lifespan of access tokens and reducing the risk of

unauthorized access. Access tokens are typically short-lived, meaning they expire quickly, while

refresh tokens—stored securely client-side—can be used to obtain new access tokens without

requiring the user to reauthenticate, thus minimizing exposure to potential attacks like Cross-Site

Scripting (XSS) through the use of HTTP-only cookies for refresh token storage. [3,12].

Scalability and User Experience:

JWT-based authentication is inherently scalable due to its stateless design, making it ideal for

distributed and high-traffic applications such as those found in e-Government 2.0 platforms, where

scalability and security are of utmost importance [1]. Since tokens are self-contained and do not

require centralized session storage, JWT-based systems allow for easy horizontal scaling across

multiple servers without the need for session synchronization or the risk of centralized bottlenecks.

This server-agnostic architecture enables any server in the network to validate tokens and process

requests seamlessly, supporting a smoother user experience even as demand scales.

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 127

Limited Control over Token Invalidation:

Unlike traditional session-based authentication, where sessions can be invalidated server-side,

JWTs are stateless and do not rely on server storage, making immediate token revocation challenging.

If a token is compromised, there is no built-in mechanism to invalidate it until it expires. Although

this can be managed with short-lived access tokens and centralized revocation lists, implementing

and maintaining these solutions can be complex, especially in high-scale systems.

Security Risks of Long-Lived Refresh Tokens:

The use of refresh tokens, while beneficial for maintaining continuous sessions, also introduces

risks. If a refresh token is compromised, an attacker can request new access tokens, potentially

maintaining access over a long period. To mitigate this, refresh tokens must be stored securely, often

in HTTP-only cookies, and applications may need to implement additional protections, such as token

rotation and IP/device tracking, to identify and revoke suspicious activity. These extra security

measures add complexity to the implementation and increase the burden on development teams.

Summary of Comparative Analysis

In summary, both session-based and JWT-based authentication methods have distinct strengths

and limitations. Session-based authentication offers high control and ease of implementation but faces

scalability and security challenges in distributed environments, requiring additional configuration and

management efforts. In contrast, JWT-based authentication is inherently more scalable and better

suited to high-traffic, distributed applications typical of e-Government 2.0, though it introduces token

invalidation complexities and additional security management requirements for refresh tokens. [17]

7. Prospects for Further Development of Research

As e-Government 2.0 platforms evolve to accommodate growing security demands, higher user

volumes, and more complex distributed architectures, further research is essential to address the

limitations and potential enhancements of session-based and JWT-based authentication models.

Several promising areas for continued investigation include:

1. Advanced Token Revocation Mechanisms:

Given the challenges associated with JWT token invalidation, developing enhanced revocation

methods, such as real-time revocation checks and hybrid token schemes, could mitigate risks

associated with compromised tokens. Solutions involving decentralized revocation databases or

blockchain-based revocation systems may offer viable avenues for overcoming the limitations of

current token-based authentication in large-scale e-Government environments.

2. Adaptive Security Models:

Traditional and token-based authentication methods could benefit from adaptive security

techniques that adjust to user behavior and environmental factors in real-time. By implementing

machine learning and AI-driven models that continuously monitor and respond to suspicious

activities, future research can explore the potential for smarter, behavior-based authentication systems

that dynamically adjust token expiration or session lifetime based on risk levels.

3. Hybrid Authentication Architectures:

Integrating the benefits of both session and token-based methods into a hybrid model could

address the scalability limitations of session-based systems while maintaining some degree of server-

side control over user sessions. This research direction may investigate adaptive hybrid approaches,

where session-based and token-based mechanisms are used selectively based on user type, access

level, or activity.

4. Improved Anti-CSRF Techniques and Secure Token Storage:

Further studies could focus on enhancing CSRF protection strategies within session-based

systems to better mitigate risks without impacting legitimate cross-site interactions. Similarly,

research into more secure client-side storage options for JWT refresh tokens—such as hardware-

https://isg-journal.com/isjea/index

128 Shikhverdiyev Ilgar et al.: Secure authentication in e-government 2.0: a comparative analysis of traditional session-

based and modern jwt-based authentication

based or cryptographic storage solutions—can help secure long-lived tokens, addressing one of the

critical vulnerabilities in JWT-based authentication.

5. Scalability and Performance Optimization in High-Traffic Applications:

As demand grows for high-performance, low-latency authentication in government platforms,

research on performance optimizations for both session and token-based systems is warranted. This

might include exploring distributed caching, advanced load balancing algorithms, or efficient token

verification mechanisms that reduce the processing overhead associated with handling large numbers

of users across distributed networks.

Expanding on these areas could lead to significant improvements in authentication security,

scalability, and user experience for e-Government applications, ensuring they remain resilient against

evolving cyber threats and adaptable to new technologies.

8.Conclusion

This study has compared session-based and JWT-based authentication within the context of e-

Government 2.0, focusing on security, scalability, and control. Both methods demonstrate unique

strengths and weaknesses that must be evaluated carefully when selecting an appropriate

authentication mechanism for government applications.

Session-based authentication offers a high degree of control and ease of implementation,

making it a reliable choice for applications requiring strict server-side control and real-time session

management. However, its limitations in scalability and susceptibility to CSRF attacks pose

significant challenges, particularly in distributed and high-traffic environments. Ensuring secure and

efficient session handling across multiple servers demands additional solutions, such as centralized

storage, which may introduce complexity and performance constraints.

JWT-based authentication, by contrast, is stateless and highly scalable, aligning well with the

demands of modern e-Government platforms. Its architecture facilitates horizontal scaling, enhances

user experience, and minimizes server load by eliminating the need for centralized session storage.

However, the challenges of token invalidation and the security risks associated with long-lived refresh

tokens require careful management and advanced security measures, particularly in high-security

environments.

In conclusion, selecting an authentication model for e-Government systems necessitates a

balanced consideration of both security and performance requirements. Conventional session-based

authentication methods, while effective in many scenarios, may not be sufficient to address the unique

demands of modern, large-scale, and distributed government systems. This is where advanced

techniques, such as JSON Web Token (JWT) based authentication, come into play, offering enhanced

security, scalability, and flexibility [6,16]. Future research and development efforts focused on hybrid

authentication models, advanced token revocation techniques, and adaptive security measures could

yield novel solutions that leverage the strengths of both methods, contributing to the evolution of

secure, scalable authentication in e-Government 2.0.

References:

1) Bucko, A., Vishi, K., Krasniqi, B., & Rexha, B. (2023). Enhancing JWT authentication and

authorization in web applications based on user behavior history. *Computers*, 12(4), 78.

https://doi.org/10.3390/computers12040078

2) Conklin, A., & White, G. B. (2006). e-Government and cyber security: The role of cyber

security exercises. In *Proceedings of the 39th Annual Hawaii International Conference on System

Sciences (HICSS'06)* (pp. 1–7). Kauai, HI, USA. https://doi.org/10.1109/HICSS.2006.133

3) Melesse, A. (2023). Enhancing REST API access control using multiple factor authentication

with refresh token. *University of Texas at Dallas Electronic Theses and Dissertations*.

https://hdl.handle.net/10735.1/10036

International Science Journal of Engineering & Agriculture 2024; 3(6): 117-129 129

4) Akanksha, & Chaturvedi, A. (2022). Comparison of different authentication techniques and

steps to implement robust JWT authentication. In *2022 7th International Conference on

Communication and Electronics Systems (ICCES)* (pp. 1–5). Coimbatore, India.

https://doi.org/10.1109/ICCES54183.2022.9835796

5) Braun, B., Kucher, S., Johns, M., & Posegga, J. (2012). A user-level authentication scheme to

mitigate web session-based vulnerabilities. In *Information Security Practice and Experience (ISPEC

2012)* (pp. 12–24). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32287-7_2

6) Medjahed, B., Rezgui, A., Bouguettaya, A., & Ouzzani, M. (2003). Infrastructure for e-

government web services. *IEEE Internet Computing*, 7(1), 58–65.

https://doi.org/10.1109/MIC.2003.1167340

7) Tolbert, C. J., & Mossberger, K. (2006). The effects of e-government on trust and confidence

in government. *Public Administration Review*, 66(3), 354–369. https://doi.org/10.1111/j.1540-

6210.2006.00594.x

8) Fan, J., & Yang, W. (2015). Study on e-gov services quality: The integration of online and

offline services. *Journal of Industrial Engineering and Management*, 8(3), 693–718.

https://doi.org/10.3926/jiem

9) Dolnák, I., & Litvik, J. (2017). Introduction to HTTP security headers and implementation of

HTTP strict transport security (HSTS) header for HTTPS enforcing. In *2017 15th International

Conference on Emerging eLearning Technologies and Applications (ICETA)* (pp. 1–6). Stary

Smokovec, Slovakia. https://doi.org/10.1109/ICETA.2017.8102478

10) Shah, I. A., Habeeb, R. A., Rajper, S., & Laraib, A. (2022). The influence of cybersecurity

attacks on e-governance. In *Cybersecurity Measures for E-Government Frameworks* (pp. 77–95).

IGI Global. https://doi.org/10.4018/978-1-7998-9624-1.ch005

11) Zhao, J. J., & Zhao, S. Y. (2010). Opportunities and threats: A security assessment of state

e-government websites. *Government Information Quarterly*, 27(1), 49–56.

https://doi.org/10.1016/j.giq.2009.07.004

12) Kubovy, J., Huber, C., Jäger, M., & Küng, J. (2016). A secure token-based communication

for authentication and authorization servers. In *Advances in Service-Oriented and Cloud Computing

(ESOCC 2016)* (pp. 237–250). Springer, Cham. https://doi.org/10.1007/978-3-319-33313-7_19

13) Melitski, J., Holzer, M., Kim, S., Kim, C., & Rho, S. (2005). Digital government worldwide:

A e-government assessment of municipal web sites. *International Journal of Electronic Government

Research (IJEGR)*, 1(1), 1–18. https://doi.org/10.4018/jegr.2005010101

14) Peguero, K., & Cheng, X. (2021). CSRF protection in JavaScript frameworks and the security

of JavaScript applications. *Human-Centric Computing and Information Sciences*, 1(2), 100035.

https://doi.org/10.1016/j.hcc.2021.100035

15) Zolotukhin, M., Hämäläinen, T., Kokkonen, T., & Siltanen, J. (2014). Analysis of HTTP

requests for anomaly detection of web attacks. In *2014 IEEE 12th International Conference on

Dependable, Autonomic and Secure Computing* (pp. 1–7). Dalian, China.

https://doi.org/10.1109/DASC.2014.79

16) Choejey, P., Fung, C. C., Wong, K. W., Murray, D., & Xie, H. (2015). Cybersecurity

practices for e-government: An assessment in Bhutan. In *The 10th International Conference on e-

Business (iNCEB2015)* (pp. 1–5). Bangkok, Thailand.

17) Ahmed, S., & Mahmood, Q. (2019). An authentication based scheme for applications using

JSON web token. In *2019 22nd International Multitopic Conference (INMIC)* (pp. 1–5).

Islamabad, Pakistan. https://doi.org/10.1109/INMIC48123.2019.9022766

18) Singh, S., Kumar, V., Paliwal, M., Verma, P., & Rajak, B. (2022). A citizen-centric approach

to understand the effectiveness of e-government web portals: Empirical evidence from India.

Information Polity, 27, 539–555. https://doi.org/10.3233/IP-220001

https://isg-journal.com/isjea/index

