

International Science Journal of Engineering & Agriculture
2025; 4(1): 1-13

https://isg-journal.com/isjea

doi: 10.46299/j.isjea.20250401.01

ISSN: 2720-6319

Orchestrating honeypot deployment in lightweight container platforms to

improve security

Yurii Tulashvili
Department of Computer Science, Lutsk National Technical University, Lutsk, Ukraine
ORCID 0000-0002-0780-9529

Viktor Kosheliuk
Department of Computer Science, Lutsk National Technical University, Lutsk, Ukraine
ORCID 0000-0002-4136-5087

To cite this article:

Tulashvili Yurii, Kosheliuk Viktor. Orchestrating honeypot deployment in lightweight container

platforms to improve security. International Science Journal of Engineering & Agriculture. Vol. 4,

No. 1, 2025, pp. 1-13. doi: 10.46299/j.isjea.20250401.01.

Received: 01 10, 2025; Accepted: 01 31, 2025; Published: 02 01, 2025

Abstract: A significant evolution has occurred in the architectural and infrastructural domains

of web applications over the past several years. Monolithic systems are gradually being superseded

by microservices-based architectures, which are now considered the de facto standard for web

application development owing to their inherent portability, scalability, and ease of deployment.

Concurrently, the prevalence of this architecture has rendered it susceptible to specialized

cyberattacks. While honeypots have proven effective in the past for gathering real-world attack data

and uncovering attacker methods, their growing popularity has made them a specific target for

cyberattacks. Traditional honeypots lack the flexibility of microservices architecture. Honeypots have

proven effective in gathering authentic attack data and analyzing attacker tactics. The core idea that

honey traps help identify malicious packets with minimal effort to remove incorrect alerts is

preserved. In addition to identifying and documenting specific attack methods used by intruders, this

system helps thwart attacks by creating realistic simulations of the actual systems and applications

within the network. This effectively slows down and confuses attackers by making it difficult for

them to gain access to real devices. This paper presents a groundbreaking approach to honeypot

management within cybersecurity, utilizing virtual clusters and a microservice architecture to

significantly improve the effectiveness of threat detection. To conduct our research, we initially

surveyed the internet to pinpoint container and container management systems operating on standard

ports that might be susceptible to attacks. The monitoring of the instrumented approach generated a

massive dataset, enabling researchers to make significant inferences about the behavior and goals of

malevolent users. We advocate for the implementation of honeypots on lightweight distribution

orchestration tools installed on Ubuntu servers, situated behind a meticulously crafted gateway and

operating on standard port configurations. In light of the scan outcomes, we recommend the

deployment of honeypot orchestration on streamlined distributions. To better protect your systems

based on our scan results, we recommend implementing honeypot orchestration for easier deployment

and management. By deploying honeypots on lightweight operating systems, you can optimize

resource usage and improve performance while maintaining essential capabilities. These capabilities

include monitoring attack patterns on vulnerable systems and analyzing the security measures

implemented by those responsible for managing exposed systems.

Keywords: honeypot, microservices, orchestration, security, virtual cluster

2 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

1. Introduction

A paradigm shift has occurred in the architectural and infrastructural landscape of web

applications over the past several years. The trend in web application development is shifting away

from monolithic systems and towards microservices-based architectures. This popularity is driven by

the advantages of microservices, such as portability, scalability, and ease of deployment. However,

as microservices become more prevalent, they also become a target for new cyberattacks specifically

designed to exploit this architecture [1]. Honeypots have proven to be valuable tools for collecting

real-world attack data and uncovering attacker methods. Security professionals can learn a lot about

how attackers work and the types of attacks they use by setting up honeypots. Traditional honeypot

designs haven't utilized microservices architectures effectively. This presents an opportunity to

develop honeypots with new capabilities due to the inherent characteristics of microservices [2].

Effective control of cyber threats requires a thorough investigation of their nature. Since

cybersecurity risks pose a serious threat, we need to investigate them thoroughly. It's crucial to

uncover our current manufacturing shortcomings. This will help us understand how adversaries might

take advantage of them, especially the information they'd prioritize. To effectively defend something,

you need to be aware of its internal state. This highlights the importance of security observability,

which allows monitoring and understanding of your system's activity [3]. To truly see what's going

on inside your API/microservices system and protect it from attacks, you need to have good

observability. Honeypots directly address these security concerns by enabling the observation of

systems through logs, statistics, and distributed traces.

The trend in large web application development has shifted towards microservices architecture,

which emerged from Service-Oriented Architecture (SOA) [4]. Microservices are built on the idea of

modularity. They are broken down into smaller, self-contained pieces that communicate with each

other without relying heavily on each other. This modular approach offers advantages like easier

scaling, faster deployment cycles, and improved security through separation of concerns. While

microservices offer advantages, their decentralized structure makes it fundamentally difficult to

secure these environments. As the use of microservices grows, attackers are increasingly motivated

to develop new ways to exploit them.

This includes malicious actors pushing infected Docker images to public repositories and

developing malware specifically designed to compromise containers and create backdoors for further

attacks [5]. The way microservices architectures are built creates security vulnerabilities that

traditional monolithic applications don't have. This leads to different hacking strategies being

employed to target each type of application. Containerized environments pose unique security

challenges compared to traditional monolithic systems. Because of these differences, intrusion

detection and prevention systems designed for monolithic applications may not be as effective in

containerized settings. These limitations stem from variations in both the methods used to detect

intrusions and the types of vulnerabilities targeted by the systems. This is why understanding the

methods adopted by attackers when infiltrating microservices-based web applications, through real-

world data, is crucial for properly identifying attack patterns and designing effective security

solutions.

Security researchers use honeypots to collect valuable real-world attack data. These decoy

systems, pioneered by projects like Honeynet, mimic real systems to attract attackers. By analyzing

attacker behavior within the honeypot, researchers can identify the latest attack patterns. Honeytraps

act as magnets for attackers. By studying how they interact with the decoy system, we can learn about

their tactics and the types of malicious packets they use. This knowledge helps us improve our

defenses against real attacks [6]. Instead of just spotting and reporting on specific attack methods or

tools used by hackers, this system also helps prevent attacks from reaching real devices. It does this

by mimicking the real systems and programs running on the network.

Honeypots provide security teams with a wider view of potential threats and the ability to defend

against attacks that bypass firewalls. Many organizations around the world use them as an extra layer

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 3

of protection against both internal and external security risks. Imagine a cybercriminal looking for

treasure. In cybersecurity, a honeytrap is a fake system that lures attackers in and allows security

experts to learn about their methods and stop them from harming real systems. It uses methods that

attackers might employ to trick people, but instead of stealing information, it gathers intelligence

about the attackers themselves and how they operate. Penetration testers often scan for open ports on

a system. These ports might appear vulnerable, but a penetration test is a controlled way to assess

those vulnerabilities.

Unlike other security measures that focus on directly stopping intrusions, honey-potting takes a

different approach. It aims to strengthen a company's ability to detect intrusions and respond to them

efficiently. This allows them to effectively handle and minimize the impact of attacks. Accurate

detection of anomalous and malicious traffic is essential for network security. By identifying these

threats, security personnel can take action to analyze and restrict them, safeguarding the network.

Researchers have developed several machine learning (ML) methods to identify and block fraudulent

traffic on networks [7]. These methods use carefully chosen data points to categorize harmful traffic

flows.

Designed to lure attackers away from real systems, decoy systems generate alerts whenever

someone interacts with them. This interaction is likely a probing attempt, scan, or attack. To

understand how attackers operate, honeypots record and analyze all system activity. This information

has been crucial for developing stronger security defenses in both universities and businesses.

2. Object and subject of research

In cloud environments, secure container orchestration is essential. Orchestration systems must

not only manage container lifecycles but also implement robust security measures to mitigate threats

and vulnerabilities. Container orchestration platforms provide automated management, including the

intelligent allocation of containers to the most suitable hosts within a cluster. Additionally, they

ensure high availability by automatically restarting containers whenever they encounter issues such

as crashes or unresponsive behavior.

By providing valuable insights into attacker behavior, honeypots allow information security

teams to proactively defend against sophisticated attacks that traditional security measures, such as

firewalls, may miss. This has led to widespread adoption of honeypots by organizations worldwide

as a crucial element of their overall security strategy. A cyber honey trap, akin to a decoy, is a

computer system intentionally designed to attract and capture cyberattacks. By mimicking legitimate

targets and employing infiltration techniques, it lures intruders into a controlled environment,

allowing security professionals to gather valuable intelligence on attackers, their methods, and their

objectives. The primary goal is to enhance a company's ability to detect intrusions and respond to

security incidents effectively. This involves identifying anomalous and malicious network traffic,

enabling security teams to analyze and block harmful traffic flows within the communication

network. While many container platforms rely on external tools for security monitoring and risk

mitigation, this research delves into the core functionalities of containerization, highlighting the

advantages of systems like Kubernetes.

This research explores the use of lightweight container platforms and their orchestration

capabilities to enhance security through the streamlined deployment and management of honeypot

systems. The focus lies in the formulation of robust security strategies specifically designed for

containerized architectures operating within cloud environments. The main objectives of the study

include investigating the effectiveness of current practices for using container security honeypots;

identification and analysis of risk factors for honeypot integration within lightweight container

platforms; develop effective container orchestration strategies with honeypot deployment.

Consequently, this study aims to introduce an experimental methodology for the deployment of

honeypots within the context of lightweight container platforms with the goal of bolstering system

security.

4 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

3. Target of research

Container orchestration automates the deployment, scaling, and management of containers,

enabling efficient and reliable application delivery. Container orchestration platforms, such as

Kubernetes, provide automated mechanisms for deploying, scaling, and managing containerized

applications within and across machine clusters or cloud infrastructures. These services incorporate

functionalities such as load balancing, service discovery, health monitoring, and automatic scaling to

guarantee robust and efficient application performance.

Just as with any other software, container images can harbor vulnerabilities. Therefore,

fundamental cybersecurity practices such as generating an SBOM, identifying embedded secrets, and

classifying all image layers continue to be of paramount importance. The complexity arises from the

dynamic nature of containerized environments, characterized by a high container density and frequent

updates, often occurring multiple times weekly due to the adoption of DevOps principles and agile

development methodologies.

Frequent updates, while essential for innovation and bug fixes, inherently increase the risk of

introducing security vulnerabilities, particularly in complex environments hosting thousands of

containers. This is compounded by the inherent security challenges associated with managing the

container runtime itself. Traditional security tools were not built for the dynamic nature of

containerized environments, hindering the establishment of a secure baseline. These legacy tools

frequently lack the visibility to inspect the inner workings of containers, leaving cybersecurity teams

to grapple with application security issues that traditional firewalls cannot address.

Securing access to container orchestration platforms like Kubernetes is crucial. Implementing

strong access control measures, including allowlisting, is essential to prevent threats from overly

permissive accounts, network attacks, and the potential for unauthorized movement within the cluster,

mirroring the security principles of established IT environments. Securing Kubernetes deployments

requires a holistic approach that addresses a wide array of security concerns. This includes measures

to protect the underlying infrastructure, container images, network traffic, and application data,

ensuring the integrity and confidentiality of the entire system.

4. Literature analysis

Honeypots can be specifically targeted by attackers, which allows for the investigation of security

weaknesses or the testing defenses against those weaknesses. Attacking honeypots provides valuable

information for cybersecurity professionals, but it doesn't necessarily pose a direct threat since the

data is often not real [8, 9]. Traditionally, intrusion detection systems (IDS), intrusion prevention

systems (IPS), and firewalls functioned as independent security tools. Honeypots, on the other hand,

are seen as elements within a broader surveillance system. Their specific placement depends on the

type of security requirements.

The information gathered by a honeypot depends on two key factors [10]:

• Interaction Level: Honeypots come in three types: low, medium, and high interaction. Each

allows attackers varying degrees of access to the system, influencing the data captured.

• Realism: How closely the honeypot mimics a real system impacts its effectiveness. A more

realistic decoy attracts attackers and provides richer data.

Low-interaction honeypots act as decoys by exposing only a limited set of functionalities that

appear real to attackers, instead of offering a complete system. This restricted environment allows the

honeypot to gather information about the attacker's attempts, but since they can't delve deep into the

system, the information collected is limited. High-interaction honeypots are attacker magnets. They

are real systems configured to appear as real targets with vulnerabilities, allowing security researchers

to study attacker behavior. Although high-interaction honeypots deliver richer attacker data, their

deployment and maintenance are significantly more expensive. This is because they carry a higher

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 5

risk of being misused in real attacks, such as botnets. This trade-off should be considered when

choosing the right honeypot for your needs.

Firewalls and honeypots serve different purposes in network security. While firewalls act as a

gatekeeper, honeypots take a more investigative approach [11]:

• Firewalls are positioned at the network edge, like a security checkpoint. They control

incoming and outgoing traffic based on predefined rules, blocking unauthorized access by

filtering ports and content. However, they don't deeply analyze the traffic itself.

• Honeypots, on the other hand, are deliberately vulnerable systems designed to attract

attackers. By studying how attackers interact with the honeypot, security teams can gain

valuable insights into their tactics and techniques.

Security systems like IDS and vulnerability scanners watch for signs of hacking attempts,

malware, or other threats by analyzing communication patterns. A common challenge with IDSs is

managing false alarms. Signature-based systems rely on predefined patterns to identify threats. This

can lead to them missing new or evolving attacks (false negatives). On the other hand, anomaly-based

systems monitor for unusual activity. While this approach can catch novel threats, it can also mistake

normal network behavior for an attack (false positives). When used with IDSs, honeypots can

dramatically improve the accuracy of intrusion detection alerts. By incorporating honeypots, IDSs

become more effective in filtering out false positives.

In a microservices architecture, an application is built from a collection of small, self-contained

services. These services communicate with each other to deliver the full functionality of the

application. To achieve specific functionalities, like managing users, processing payments, or sending

emails, individual microservices are created [12, 13]. These self-contained services communicate

with each other using network interfaces, such as remote procedure calls (RPC) or APIs. Monolithic

applications are stuck with one database, but microservices are not. Each service can utilize the most

suitable database for its data model and workload [14]. With a loosely coupled system design,

individual services can be scaled, deployed, managed, and updated without impacting other parts of

the system. Instead of sharing the kernel directly, containers use the host machine's kernel and its

features like namespaces. This allows them to isolate their processes from each other while also

controlling how much CPU and memory each container can use. This approach allows for

independent deployments and scaling of each microservice, thanks to their custom environments.

Traditional honeypot methods are becoming less effective as containerization and microservices

gain popularity among engineers and technology professionals. These new approaches to building

applications complicate the use of honeypots in the traditional manner. Traditional operating system-

level virtualization is being overshadowed by containerization [15, 16]. With containerization,

applications are bundled with their necessary components (like libraries) into isolated units called

containers. These containers act like self-contained mini-environments, ensuring consistent execution

regardless of the underlying system. Because containers utilize the same underlying operating system

and components as the host machine, they have a smaller footprint and require fewer resources

compared to virtual machines [17]. Microservices, small and independent building blocks, are

deployed using container technology. This approach creates programs that are more adaptable and

can be easily expanded upon. With this approach, we can modify or scale a function without having

to develop and release a whole new version each time.

These days, Kubernetes (K8s) is the preferred tool for managing containerized applications that

need to be always available, handle changing demands, and be able to bounce back from failures.

Kubernetes has become the preferred platform for managing large and intricate deployments of

containerized applications [18]. It offers a powerful and user-friendly way to orchestrate these

applications, ensuring they run efficiently and interact seamlessly. Using the container platform, you

can build clusters that are reliable, adaptable, and resilient to disruptions, ensuring your applications

run smoothly. As containerization, a technology that packages applications into lightweight, portable

units, has gained traction, Kubernetes has become a prominent tool for managing containerized

applications [19, 20]. This has led to its widespread use in diverse application areas like Fog, Edge,

6 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

and IoT computing. MicroK8s (mK8s), K3s and minikube (MK) are all lightweight versions of

Kubernetes designed to simplify setting up and running Kubernetes clusters. They achieve this by

streamlining and customizing core Kubernetes components. This technology focuses on making

cluster setup, operation, and upkeep easier, allowing for deployments on devices with limited

resources [21, 22]. However, current performance evaluations primarily address scenarios where the

devices are either inactive or under heavy workload. For container orchestration to work effectively

in environments with limited resources, lightweight distributions were developed to optimize

resource usage.

MicroK8s. Created by Canonical, mK8s is a simplified version of Kubernetes designed for easier

use on both public and private clouds. mK8s is a lightweight and fully functional Kubernetes

distribution that is ideal for resource-constrained environments, particularly those focused on the

Internet of Things. By default, mK8s automatically turns on all the essential parts of Kubernetes to

get your cluster up and running. You can easily enable other helpful tools, like DNS, ingress, or the

metrics-server, with just one simple command. Achieving high availability, where both the control

plane and datastore are replicated across multiple nodes, can be accomplished with a few

configuration commands. MK8s, a Kubernetes distribution, can be installed using snap, a package

manager from Canonical that isolates applications in a sandbox environment. To ensure optimal

performance, it's recommended to allocate at least 4GB of memory and 20GB of storage (preferably

SSD) for running mK8s.

K3s, a lightweight Kubernetes offering from Rancher, is designed for simplicity and efficiency.

This fully-compliant Kubernetes distribution comes with all the essential components pre-installed,

making it easy to set up a highly available and fault-tolerant cluster on your nodes. K3s is ideal for

running applications on low-resource environments. Deployment is achieved through a single,

lightweight binary that incorporates all necessary dependencies. Like mK8s, Rancher opts for a

different data storage solution: SQLite3. This, along with removing unnecessary components, keeps

the overall footprint minimal. To reduce memory usage, K3s takes a different approach to organizing

the control plane. Instead of having separate services for each component, K3s combines everything

into a single process on both the master (server) and worker (agent) nodes. K3s offers a streamlined

installation process through a shell script. This script allows for flexible deployment, enabling the

application to function as either a server or an agent node. Additionally, scaling the cluster for high

availability is simplified. New worker nodes can be seamlessly integrated with just a few commands.

To run this application, you will need a computer with at least 1 vCPU and 512MB of memory [23].

Minikube makes it easy to run a Kubernetes cluster directly on your personal computer, whether

you're using macOS, Linux, or Windows. Designed specifically for developers, it aims to be the go-

to tool for building and testing applications on Kubernetes locally. Minikube also strives to support

as many Kubernetes features as possible, ensuring a development experience that closely reflects a

real-world Kubernetes environment. Minikube offers a local, single-node Kubernetes environment

for developers. It includes all the core Kubernetes services like API server, controller manager, and

scheduler, allowing you to test and learn container orchestration without needing a complex setup.

Minikube simplifies managing your Kubernetes cluster with built-in commands. While Minikube is

an excellent tool for learning and development, it's important to remember that it's a single-node

cluster. This makes it unsuitable for production environments. For production use cases, a multi-node

Kubernetes cluster is necessary.

Researchers actively promote honeypots as a method for gathering threat intelligence. These

systems reveal the tools, tactics, and procedures used by threat actors, providing valuable information

for defenders. The following experiment is flexible and can be adapted to various research objectives.

The widespread adoption of microservices and Kubernetes has outpaced current security research

efforts. To address this gap, there is a critical need for new research focused on identifying threats

and vulnerabilities in these systems. While microservices-based honeypots are a relatively new

concept, ongoing research aims to develop innovative honeypots that can adapt to the ever-changing

technological landscape.

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 7

HoneyKube is a medium-fidelity honeypot built by C. Gupta [24] for Google Kubernetes Engine.

Their discussion focused on the security risks associated with microservice architectures.

Microservices are a popular design approach used in container-based systems. Gupta's research

examined both adversarial activity and vulnerabilities within Kubernetes, focusing on exposed

services under attack. Instead of focusing on technical details, this project (HoneyKube) aimed to

understand the attacker's overall goals. Using Google Kubernetes Engine (GKE)'s security features,

it created a controlled environment to observe how attackers might target a microservices

architecture. To understand the threats faced by unhardened container orchestration deployments, we

created a honeypot environment that simulated vulnerabilities attackers might exploit. This honeypot

captured data on attacker behavior within the simulated environment.

Inspired by the Software-as-a-Service (SaaS) model, J.H. Jafarian and A. Niakanlahiji proposed

a concept called "Honeypot-as-a-Service" (HaaS) [25]. This approach aims to make honeypots more

accessible to small and medium-sized enterprises (SMEs) by delivering them as a service, eliminating

the need for in-house setup and maintenance. This can significantly improve the cybersecurity posture

of SMEs by providing them with an easy-to-use tool for threat detection and analysis. The designers

prioritized creating a honeypot that was not only easy to integrate and adapt (scalable and flexible

plug-and-play service) but also highly convincing to attackers. It needed to appear identical to real

production servers to effectively lure attackers. The generated honeypots underwent rigorous

evaluation by security professionals.

In a study by Kelly et al., researchers investigated how malicious activity on different cloud

platforms changes as companies adopt remote work models [26]. They hypothesized that the increase

in cloud use would be accompanied by a rise in cyberattacks. Both this study and others have observed

malicious activities targeting poorly deployed container orchestration services. To investigate this

further, the researchers deployed a series of pre-packaged honeypots in the form of Docker containers

on three major cloud hosting providers: AWS, Azure, and GKE. The honeypots deployed in the study

are low to medium-interaction honeypots, which are essentially Docker containers configured to

mimic real services and collect data about attacker interactions. One of the key objectives of their

research was to analyze the impact of cloud provider and geographical location on container attack

methods. The researchers sought to determine if container vulnerabilities are exploited differently

based on the deployment environment (cloud provider and region).

5. Research methods

This research leverages virtual clusters and containers to create isolated and scalable

environments for experimentation. Virtual clusters provide a way to create isolated Kubernetes

environments within a single physical cluster, allowing for improved resource utilization and multi-

tenancy. We support the creation of multiple virtual clusters. Each cluster operates in a self-contained

environment, completely isolated from other virtual clusters and the host cluster itself. Virtual clusters

provide isolated spaces where sensitive elements can be securely managed. This allows for controlled

exposure, ensuring only authorized entities can access them, unlike their potential equivalents on the

host cluster which might be more vulnerable. This strategy allows us to safely expose components

such as Kubernetes infrastructure and maintenance tools to attackers, ensuring the honeypot remains

operational to gather valuable information.

We deployed honeypots on several popular lightweight container platforms (LCPs), including

microk8s, K3s, and minikube. High-interaction decoys closely mimic real production environments,

offering valuable insights into attacker behavior. However, they require more resources to maintain

and necessitate stricter security measures for the testing environment. Considering operating cost

efficiency, we analyze the image processing of the following Docker containers:

• ADBHoney [27]. ADB (Android Debug Bridge) is a tool that lets you communicate with

Android devices like phones, TVs, and DVRs, whether they're physical devices you plugged

in or running as simulations on your computer. The tool offers a suite of commands, such as

8 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

adb shell and adb push, to aid developers in debugging applications and transferring data

(content) to connected devices. This process usually involves a USB cable and incorporates

robust authentication and security features. This project develops a simple honeypot

specifically targeting port 5555. It aims to attract and analyze malware automatically, without

requiring extensive user interaction. This method helps us identify the malicious software

attackers distribute to vulnerable systems with open port 5555.

• DDosPot [28]. DDosPot is a honeypot used to track and monitor DDoS attacks sent over

multiple devices (Multicast UDP). This platform uses UDP (User Datagram Protocol) to

create decoy servers that act like honeypots. These honeypots help monitor and track DDoS

attacks. The system allows easy addition of these honeypot servers, called "pots," using simple

plugins: DNS server, NTP server, SSDP server, CHAREN server and Random/mock UDP

server. Communication applications utilize ports 19, 123, 1900, and 53 to function.

• ssh honeypot (cowrie). The cowrie lure is a high-interaction honeypot designed to mimic

Telnet and SSH services. It operates by logging brute-force attacks targeting these protocols.

In simpler terms, it acts as a decoy login system that records any hacking attempts made

against SSH and Telnet, allowing security personnel to track and respond to potential security

threats. Cowrie deceives attackers by presenting a fake file system and simulated terminal

service, which compels them to interact with the honeypot instead of a real system. Cowrie

honeypots do not aim to understand attacker motivations. Instead, they record attacker

interactions with decoy services (like SSH or Telnet) to analyze their techniques and tools.

This allows defenders to learn about attacker behavior and improve security measures [29].

Figure 1 shows a diagram of the placement and interaction of various honeypots in the

microservice architecture of the LCP virtual cluster.

Figure 1. Model of the placement of various honeypots in the microservice architecture.

We will analyze IaaS attacker activity patterns in various geographic regions. To ensure a wider

reach, we opted for Amazon Web Services (AWS) as our cloud provider. This platform grants us the

control to scatter decoy servers across diverse geographic locations, along with assigning them

specific IP address ranges. Out of the available AWS services for hosting, Amazon EKS was selected

to orchestrate the Docker containers. Amazon EKS provides a dedicated Kubernetes control plane for

each cluster, ensuring isolation between clusters and AWS accounts.

Amazon Managed Service for Prometheus offers a built-in, agentless collector that automatically

collects Prometheus metrics from your Amazon EKS workloads. This frees you from the hassle of

managing monitoring agents yourself. EKS metrics are automatically discovered, eliminating the

need to install additional agents on your system. The service operates across multiple Availability

Zones (AZs) to increase reliability and security [30]. Figure 2 illustrates the architecture of

Prometheus interaction with AWS services.

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 9

Figure 2: Amazon Managed Service for Prometheus.

Amazon Managed Service for Prometheus uses Elastic Network Interfaces (ENIs) to collect

metrics. It creates a separate ENI for every subnet you specify during scraper provisioning. The

collected metrics are securely sent (remote write) to your Amazon Managed Service for Prometheus

workspace within your Virtual Private Cloud (VPC) using a VPC endpoint. This keeps the data on

your private network. Amazon Managed Grafana automatically uses PrivateLink VPC endpoints to

access metrics directly from Amazon Managed Prometheus, ensuring secure communication within

your VPC. With this system, the information we collect remains safe within our network and never

goes out onto the public internet. Our highly available collector offers a secure and reliable way to

monitor your systems, eliminating the need for manual agent provisioning.

6. Research results

During the experiment, each of the virtual clusters (microk8s, K3s, minikube) consists of three

nodes with different honeypots (ADBHoney, DDosPot, ssh honeypot) hosted on different location

(region 1: Asia Pacific, Tokyo, ap-northeast-1; region 2: South America, Sao Paulo, sa-east-1).

We established a controlled environment to evaluate resource consumption, guaranteeing

reproducible, understandable, and consistent results. The virtual cluster consisted of three virtual

machines, each running Ubuntu 22.04 and equipped with 2 virtual processors, 4 GB of memory, and

a fast 50 GB solid-state drive. This environment uses a single on-premises physical host to run all

virtual machines. KVM acts as the hypervisor, providing virtualization capabilities, while container

handles container runtime. The host machine is equipped with a t3.2xlarge 8vCPU, 64GB memory

and a fast SSD. Instead of isolating the containers on their own network, they share the network

directly with the host system. This means they don't get their own IP address and use the system's

address instead. In total, the system was operational 24 hours a day for 10 days, from 02th October

2024 to 12th October 2024.

Once you've set up cloud honeypot instances in two separate regions, access the front-end

interface by opening a web browser and going to the following address: https://<external IP

address>:64297. Then, log in using the credentials you created during the honeypot setup process.

The overall number of attacks on both regions is shown in Figure 3. These attacks began after the IP

address was publicly exposed on the internet. If exposing an IP address leads to immediate attacks, it

suggests the presence of bots or automated scans continuously targeting cloud IP ranges. Before

enabling accessibility features for operations, it is vital to secure our cyber assets. This point is further

emphasized by the attack statistics gathered through our experiments, illustrated in Figures 3-5.

10 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

Figure 3. Attack statistics for Honeypot instances in lightweight container platforms K3s.

Figure 4. Attack statistics for Honeypot instances in lightweight container platforms microk8s.

Figure 5. Attack statistics for Honeypot instances in lightweight container platforms minikube.

Honeypots serve as decoys, attracting and analyzing attempted attacks. They can't predict entirely

unknown threats, but they effectively detect them. Early detection can prevent attackers from reaching

your critical systems. Instead of focusing on detecting attacks, let's discuss proactive security

measures that can protect your infrastructure. This includes implementing strong firewall rules,

creating complex passwords, and utilizing encryption, digital signatures, and authentication

technologies.

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 11

7. Conclusions

Our research introduced a cutting-edge honeypot that leverages a microservices architecture for

increased flexibility and scalability. The use of virtual clusters in honeypots and security research has

the potential to be highly beneficial. This is a developing field with exciting possibilities for both

future advancements and industry applications. This research explores the security risks of container

orchestration systems publicly accessible on the internet. We first measured the prevalence of such

exposed systems through an empirical internet-wide study. Following this, we constructed a low-

interaction honeypot to observe real-world attacks and gain insights into the attackers' tactics,

techniques, and procedures (TTPs). We are investigating the development of a deception technology

that utilizes profiling of lightweight container orchestration platforms deployed on virtual clusters.

The first step was identifying the most appropriate technologies for deploying honeypots. We

evaluated different options and ultimately chose virtual machines and containers as the main

solutions. To gain better control and scalability for my honeypots, we opted for lightweight container

orchestration with Kubernetes. To improve scalability and geographic reach, we implemented

lightweight Kubernetes distributions that support multi-node deployments in different locations. This

strategic decision led to efficient resource allocation and seamless honeypot deployment in diverse

settings.

By deploying honeypots in various locations, we can collect a richer set of attack data. This

variety helps us identify attack patterns that might be unique to certain regions. These insights are

crucial for constantly developing better cybersecurity strategies. The text emphasizes the importance

of innovative solutions in strengthening digital ecosystems against emerging threats. This is achieved

by offering a nuanced understanding of malicious activities across different environments. While this

thesis paves the way for the use of distributed honeypots, there is significant room for further

investigation and development:

• safeguard communication between honeypot networks: design secure communication

methods for connecting distributed honeypot clusters; prioritize data privacy (confidentiality),

accuracy (integrity), and constant accessibility (availability) during communication; this will

block unauthorized access and protect against data leaks.

• the power of distributed honeypots: unlock the potential of vast honeypot data by training

machine learning models to identify and neutralize cyber threats in real-time.

• automate data filtering for honeypots: leverage machine learning or rule-based systems to

identify non-sensitive information captured by honeypots. This allows for selective storage

and analysis, focusing on valuable insights while respecting user privacy.

The research emphasizes the importance of container security to ensure the secure management

and deployment of containerization and orchestration capabilities, thereby enhancing overall system

reliability and reducing risks. This streamlined visualization process simplifies resource utilization

monitoring while maintaining accuracy. Containerized applications within the cloud system benefit

from load balancing and fault tolerance through the implementation of in-built secure protocols. The

dominance of microservices makes strong security measures essential. We believe our contribution

will lead to a significant improvement in the security landscape for microservices applications. We

believe our research and the collected data will be instrumental in developing new security solutions

for microservices architectures.

References:

1) Pahl, Claus; Jamshidi, Pooyan; Zimmermann, Olaf (2020). Microservices and Containers.

Software Engineering 2020. DOI: 10.18420/SE2020_34.

2) Liu, G. et al. (2020). Microservices: Architecture, container, and challenges. in 2020 IEEE

20th International Conference on Software Quality, Reliability and Security Companion (QRS-C).

629–635. https://doi.org/10.1109/QRS- C51114.2020.00107.

12 Tulashvili Yurii et al.: Orchestrating honeypot deployment in lightweight container platforms to improve

security

3) Wan, X., Guan, X., Wang, T., Bai, G. & Choi, B.-Y. (2018). Application deployment using

microservice and docker containers: Framework and optimization. J. Netw. Comput. Appl. 119, 97–

109. https://doi.org/10.1016/j.jnca. 2018. 07. 003.

4) Batchu, R. K. & Seetha, H. (2021). A generalized machine learning model for DDoS attacks

detection using hybrid feature selection and hyperparameter tuning. Comput. Netw. 200, 108498.

https:// doi. org/ 10. 1016/j. comnet. 2021. 108498.

5) Halvorsen, J., Waite, J. & Hahn, A. (2019). Evaluating the observability of network security

monitoring strategies with tomato. IEEE Access 7, 108304–108315. https:// doi. org/ 10. 1109/

ACCESS. 2019. 29334 15.

6) Zhi Li,Weijie Liu, Hongbo Chen, XiaoFengWang, Xiaojing Liao, Luyi Xing, Mingming

Zha, Hai Jin, and Deqing Zou. (2022). Robbery on DevOps: Understanding and Mitigating Illicit

Cryptomining on Continuous Integration Service Platforms. In 2022 IEEE Symposium on Security

and Privacy (SP). IEEE, San Francisco, CA, USA, 2397–2412.

https://doi.org/10.1109/SP46214.2022. 9833803

7) Shafiq, M., Tian, Z., Sun, Y., Du, X. & Guizani, M. (2020). Selection of effective machine

learning algorithm and Bot–IoT attacks traffic identification for internet of things in smart city. Future

Gener. Comput. Syst. 107, 433–442. https://doi. org/10.1016/j.future.2020.02. 017.

8) Franco, J., Aris, A., Canberk, B. & Uluagac, A. S. (2021). A survey of honeypots and

honeynets for internet of things, industrial internet of things, and cyber-physical systems. IEEE

Commun. Surv. Tutorials 23, 2351–2383. https:// doi. org/ 10. 1109/ COMST. 2021. 3106669

9) Y. Sun, Z. Tian, M. Li, S. Su, X. Du and M. Guizani. (2021). Honeypot Identification in

Softwarized Industrial Cyber–Physical Systems. IEEE Transactions on Industrial Informatics, vol.

17, no. 8, pp. 5542-5551, Aug. 2021, https://doi.org/ 10.1109/TII.2020.3044576

10) The Honeynet Project: Spam Honeypot with Intelligent Virtual Analyzer. Available at:

https://www.honeynet.org/

11) Windows Container Malware Targets Kubernetes Clusters. Available at:

https://threatpost.com/windows-containers-malware-targets-kubernetes/166692/

12) Rashid, S. M., Haq, A., Hasan, S. T., Furhad, M. H., Ahmed, M., & Ullah, A. B. (2022).

Faking smart industry: Exploring cyber-threat landscape deploying cloud-based honeypot. Wireless

Networks, 1-15. Advance online publication. https://doi.org/10.1007/s11276-022-03057-y

13) Jay Chen. (2020) Attacker’s Tactics and Techniques in Unsecured Docker Daemons

Revealed. Available at: https://unit42.paloaltonetworks.com/attackers-tactics-andtechniques-in-

unsecured-docker-daemons-revealed/

14) Docker. Run the Docker daemon as a non-root user (Rootless mode). Available at:

https://docs. docker.com/engine/security/rootless/#known-limitations

15) Kubernetes. Good practices for Kubernetes Secrets. Available at: https://

kubernetes.io/docs/concepts/ security/secrets-good-practices/ Section: docs.

16) Kubernetes. Pods. Available at: https://kubernetes.io/docs/concepts/workloads/pods/

17) Kubernetes. Production-Grade Container Orchestration. Available at: https://kubernetes.io/

18) Andrew Martin and Michael Hausenblas. (2021). Hacking Kubernetes: threat-driven

analysis and defense. O’Reilly Media, Sebastopol, CA. 300. ISBN 9781492081739.

19) Niels Provos and Thorsten Holz. (2007). Virtual Honeypots: From Botnet Tracking to

Intrusion Detection. Addison-Wesley Professional PTG, Boston, Massachusetts. 440. ISBN

0321336321.

20) Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pandita. (2023)

Security Misconfigurations in OpenSource Kubernetes Manifests: An Empirical Study. ACM

Transactions on Software Engineering and Methodology TBD, 37. https://doi.org/10.1145/ 3579639

Publisher: ACM New York, NY.

21) Ferreira, A.P., Sinnott, R. (2019). A performance evaluation of containers running on

managed kubernetes services. In: 2019 IEEE International Conference on Cloud Computing

https://doi.org/10.1007/s11276-022-03057-y
https://kubernetes.io/

International Science Journal of Engineering & Agriculture 2025; 4(1): 1-13 13

Technology and Science (CloudCom), pp. 199-208. IEEE. https://doi.org/10.1109/cloudcom.

2019.00038

22) Goethals, T., Turck, F.D., Volckaert, B. (2019). FLEDGE: Kubernetes compatible container

orchestration on low-resource edge devices. In: Internet of Vehicles. Technologies and Services

Toward Smart Cities, pp. 174-189. Springer International Publishing. https://doi.org/ 10.1007/978-3-

030-38651-1 16

23) Kristiani, E., Yang, C.T., Huang, C.Y., Wang, Y.T., Ko, P.C. (2020) The implementation of

a cloud-edge computing architecture using OpenStack and kubernetes for air quality monitoring

application pp. 1-23. https://doi.org/10.1007/s11036-020-01620-5

24) C. Gupta. (2021). HoneyKube: designing a honeypot using microservices-based

architecture. Ph.D. Dissertation. University of Twente. Available at: http://essay.utwente.nl/ 88323/

25) Jafarian, Jafar Haadi & Niakanlahiji, Amirreza. (2020). Delivering Honeypots as a Service.

DOI: 10.24251/HICSS.2020.227. Available at: http://hdl.handle.net/10125/63966

26) Christopher Kelly, Nikolaos Pitropakis, Alexios Mylonas, Sean McKeown, and William J.

Buchanan. (2021). A Comparative Analysis of Honeypots on Different Cloud Platforms. Sensors 21,

7 , 2433. https://doi.org/10.3390/ s21072433

27) Github : huuck / adbhoney. Available at: https://github.com/huuck/ADBHoney

28) DDosPot. Available at: https://github.com/aelth/ddospot

29) Cowrie Project. Available at: https://github.com/cowrie/cowrie

30) Inc. Amazon Web Services. Security in Amazon EKS - Amazon EKS. Available at:

https://docs.aws.amazon. com/eks/latest/userguide/security.html

https://doi.org/10.1109/cloudcom.%202019.00038
https://doi.org/10.1109/cloudcom.%202019.00038
https://doi.org/10.1007/s11036-020-01620-5
http://essay.utwente.nl/
https://github.com/aelth/ddospot
https://github.com/cowrie/cowrie

