Vector modeling of atomic linguistic elements taking into account their dual algebraic essence

Authors

DOI:

https://doi.org/10.46299/j.isjel.20250406.08

Keywords:

logical scalar, logical vector, sentential connections, disjunction, conjunction, inversion, simple word-combinations of natural language, grammatical connection, main and secondary members of a sentence, axioms of the logical field

Abstract

In modern linguistics and mathematics the task of mathematical formalization of natural language for the purpose of its further computer processing is becoming more and more relevant. This topic is in demand, primarily, in artificial intelligence systems, which are becoming increasingly widespread both in science and in everyday life. Therefore, the efforts of scientists are aimed at finding a mathematical apparatus that would meet the needs of an interdisciplinary research direction associated with the symbiosis of mathematical and humanitarian knowledge. Human thought processes, which are reflected in speech phenomena, are traditionally formalized by the apparatus of mathematical logic. But at the current level of development of linguistic research, the tools of classical logic are insufficient. The mathematical apparatus of vector logical algebra, which is a development of the algebra of finite predicates, makes it possible to develop computer linguistics. This article shows the fundamental possibility of mathematically formalizing the simplest speech constructions using the basic operations of vector logical algebra. Using the example of Ukrainian and English, which are representatives of different language groups, it is proven that for all simple word combinations of natural language the axioms of the logical field are fulfilled. It does not matter whether these word-combinations consist of main or secondary members of the sentence, nor what type of grammatical connection is used in these word combinations. Such formalization allows us to represent natural language in the form of algebraic formulas and consider its constructions as elements of a vector space.

References

Yakimova N. A. (2025). Mathematical formalization of simple word-combinations using the algebra of finite predicates (on the example of the Ukrainian language). Modern engineering and innovative technologies. Karlsruhe, Germany. Issue № 3, part 3. Pp. 138 – 148. doi: 10.30890/2567-5273.2025-37-03-017. https

Шабанов-Кушнаренко Ю.П. (1984). Теорія інтелекту. Математичні засоби. Харків: Вища школа, 144с.

Шабанов-Кушнаренко Ю.П. (1986). Теорія інтелекту. Технічні засоби. Харків: Вища школа, 136с.

Шабанов-Кушнаренко Ю.П. (1987). Теорія інтелекту. Проблеми та перспективи. Харків: Вища школа, 160с.

Якімова Н.А. (2023). Дискретна математика. Частина 2. Булеві функції. Одеса: ОНУ ім. І.І. Мечникова, 126с.

Russel Stuart J., Norvig P. (2003). Artificial Intelligence: a modern approach. Ney Jersey: Prentice Hill Upper Saddle River, 1406p.

Luger George F. (2002). Artificial Intelligence: structures and strategies for complex problem solving. Boston: Addison Wesley, 864p.

Якімова Н.А. (2025) Алгебра скінченних предикатів. Одеса: ОНУ ім. І.І. Мечникова, 133с.

Якімова Н.А. (2025) Векторна логічна алгебра. Одеса: ОНУ ім. І.І. Мечникова, 126с.

F.R. Gantmacher. (1960). The Theory of matrices. AMS Chelsea Publishing, New York.

Левицький В.В. (2004). Квантитативні методи в лінгвістиці. Чернівці: «Рута», 190с.

Варбанець П. Д., Якімова Н. А. (2021). Лінгвостатистика. Одеса: ОНУ ім. І.І. Мечникова, 182 с.

Haykin S. (2006). Neural networks. Ney Jersey: Prentice Hill Upper Saddle River, 1104p.

Yakimova N.A. (2024). Operation of reversing of logical matrices. SWorldJournal. Svishtov, Bulgaria. Issue № 27. Part 1. Pp. 165 – 172. doi: 10.30888/2663-5712.2024-27-00-017. URL: https://www.sworldjournal.com/index.php/swj/issue/view/swj27-01/swj27-01

Якімова Н.А. (2023). Операції над блочними предикатними матрицями. Вісник Одеського національного університету ім. І.І. Мечникова. Дослідження в математиці і механіці. Том 28. Випуск 1 – 2 (41 – 42). С.185-199. doi: 10.18524/2519-206. URL: X

Downloads

Published

2025-12-01

How to Cite

Yakimova, N. A. (2025). Vector modeling of atomic linguistic elements taking into account their dual algebraic essence. International Science Journal of Education & Linguistics, 4(6), 75–80. https://doi.org/10.46299/j.isjel.20250406.08