Modern molecular genetic methods of age determination in forensic science

Authors

DOI:

https://doi.org/10.46299/j.isjjp.20250403.01

Keywords:

genetics, DNA, mitochondria, genes, biological objects, forensic examination

Abstract

In Ukraine, considerable attention is paid to the development of innovation, and scientific and technological development is taking place at a rapid pace. First of all, modern digital and innovative technologies, their implementation and use relate to the field of forensic science as an additional tool and expansion of the possibilities of researching various objects and material evidence in order to obtain evidentiary information in the interests of the investigation. Today, DNA analysis is used not only in forensic science, where it has become the main method of human identification, but also to establish paternity and other types of kinship, even ethnicity. Forensic activities using DNA analysis help to identify essential signs of a crime and create a comprehensive evidence base regarding the relationship and identification of unidentified corpses, the origin of a biological trace from a particular person, the sex of biological material, etc. DNA information of a person, unlike other individualizing features, is not fully covered by the concept of personal data, but goes beyond this definition. In addition to its individuality, the DNA molecule is associated with its other main property - heredity as a means of transmission. Modern methods of DNA research allow obtaining not only identifying genetic information about a particular individual, but also a number of significant information about the characteristics of his or her biological relatives that can be inherited. Thus, the DNA molecule is not only a carrier of individual information about a particular person, but is also capable of transmitting hereditary information about the relatives of that person. Genetic information allows for high accuracy in the identification of a person and, accordingly, is of great practical importance in the prevention, investigation, detection of crimes and identification of the perpetrators, improves the search for missing persons and identification of unidentified corpses.

References

Wochna K, Bonikowski R, Śmigielski J, Berent J. Aspartic acid racemization of root dentin used for dental age estimation in a Polish population sample. Forensic Sci Med Pathol. 2018;14(3):285-294. doi: 10.1007/s12024-018-9984-8.

Dumache R, Ciocan V, Muresan C, Enache A. Molecular DNA Analysis in Forensic Identification. Clin Lab. 2016;62(1-2):245-8. doi: 10.7754/clin.lab.2015.150414.

Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, Brown IJ, de Iorio M, Daviglus ML, Holmes E, Stamler J, Nicholson JK, Elliott P. Opening up the "Black Box": metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol. 2010;63(9):970-9. doi: 10.1016/j.jclinepi.2009.10.001.

Hu Z, Zhang SH, Wang Z, Bian YN, Li CT. Progress of DNA-based Methods for Species Identification. Fa Yi Xue Za Zhi. 2015;31(2):129-31.

Meng HT, Lan Q, Zhu BF. DNA Molecular Identification of Human Phenotypic Characteristics-New Progress Over the Past Five Years. Fa Yi Xue Za Zhi. 2019;35(5):512-518. English, Chinese. doi: 10.12116/j.issn.1004-5619.2019.05.002.

Becker J, Mahlke NS, Reckert A, Eickhoff SB, Ritz-Timme S. Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med. 2020;134(2):721-733. doi: 10.1007/s00414-019-02054-9.

Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet. 2023;65:102870. doi: 10.1016/j.fsigen.2023.102870.

Zapico SC, Ubelaker DH. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences. Aging Dis. 2013;4(6):364-80. doi: 10.14336/AD.2013.0400364.

de Punder K, Heim C, Wadhwa PD, Entringer S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology. 2019;101:87-100. doi: 10.1016/j.psyneuen.2018.10.019.

Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc). 2010;75(13):1563-83. doi: 10.1134/s0006297910130055.

Harada M, Hu B, Lu J, Wang J, Rinke AE, Wu Z, Liu T, Phan SH. The dual distinct role of telomerase in repression of senescence and myofibroblast differentiation. Aging (Albany NY). 2021;13(13):16957-16973. doi: 10.18632/aging.203246.

Márquez-Ruiz AB, González-Herrera L, Luna JD, Valenzuela A. DNA methylation levels and telomere length in human teeth: usefulness for age estimation. Int J Legal Med. 2020;134(2):451-459. doi: 10.1007/s00414-019-02242-7.

Keerti A, Ninave S. DNA Fingerprinting: Use of Autosomal Short Tandem Repeats in Forensic DNA Typing. Cureus. 2022;14(10):e30210. doi: 10.7759/cureus.30210.

Liu B, Song F, Yang Q, Zhou Y, Shao C, Shen Y, Zhao Z, Tang Q, Hou Y, Xie J. Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med. 2019;133(5):1321-1331. doi: 10.1007/s00414-019-02027-y.

Lindenbergh A, van den Berge M, Oostra RJ, Cleypool C, Bruggink A, Kloosterman A, Sijen T. Development of a mRNA profiling multiplex for the inference of organ tissues. Int J Legal Med. 2013;127(5):891-900. doi: 10.1007/s00414-013-0895-7.

Silva SS, Lopes C, Teixeira AL, Carneiro de Sousa MJ, Medeiros R. Forensic miRNA: potential biomarker for body fluids? Forensic Sci Int Genet. 2015;14:1-10. doi: 10.1016/j.fsigen.2014.09.002.

Sauer E, Reinke AK, Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int Genet. 2016;22:89-99. doi: 10.1016/j.fsigen.2016.01.018.

Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T; NABEC/UKBEC Consortium; Ramos YF, Göring HH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MM, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Völzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SL, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YD, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM, Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci L, Esko T, Teumer A, van Meurs JB, Johnson AD. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570. doi: 10.1038/ncomms9570.

Jung SE, Shin KJ, Lee HY. DNA methylation-based age prediction from various tissues and body fluids. BMB Rep. 2017;50(11):546-553. doi: 10.5483/bmbrep.2017.50.11.175.

Mozhui K, Pandey AK. Conserved effect of aging on DNA methylation and association with EZH2 polycomb protein in mice and humans. Mech Ageing Dev. 2017;162:27-37. doi: 10.1016/j.mad.2017.02.006.

Freire-Aradas A, Phillips C, Lareu MV. Forensic individual age estimation with DNA: From initial approaches to methylation tests. Forensic Sci Rev. 2017;29(2):121-144.

Vidak S, Foisner R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol. 2016;145(4):401-17. doi: 10.1007/s00418-016-1411-1.

Stubbs TM, Bonder MJ, Stark AK, Krueger F; BI Ageing Clock Team; von Meyenn F, Stegle O, Reik W. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 2017;18(1):68. doi: 10.1186/s13059-017-1203-5.

Wang M, Lemos B. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res. 2019;29(3):325-333. doi: 10.1101/gr.241745.118.

Published

2025-06-01

How to Cite

Mylostiva, D., & Babchenko А. (2025). Modern molecular genetic methods of age determination in forensic science. International Science Journal of Jurisprudence & Philosophy, 4(3), 1–10. https://doi.org/10.46299/j.isjjp.20250403.01