A model for building a wireless terahertz network with increased communication reliability

Authors

DOI:

https://doi.org/10.46299/j.isjea.20230202.16

Keywords:

Terahertz communication systems, distributed register, blocking of transmission of direct visibility, blockchain systems, heterogeneous network 5G

Abstract

The proposed principles of implementation of new innovative service of networks of 5 and next generations – use of resource of local clusters of the network infrastructure of terahertz range with integrated reconfigured intellectual surfaces (RPE) for ensuring reliability of communication. The solutions for using the distributed registry for implementation of the mechanism of warning henchconfidence during blocking in the terahertz range are given. New in the proposed solution is that in modern wireless networks during the transfer of service (hinder) of the user's equipment the mechanism of consecutive interaction and transmission of signals between several objects of mobility and session management is launched. The proposed solution differs from the known fact that eliminates the need for consistent processing of requests for many managed objects, especially when the network function should be chosen from a number of candidates and accordingly ensures implementation of various services with ultra-low delays. A proposed terahertz network coverage design model with support for reconfigurable intelligent surfaces based on Kohonen self-organizing maps. The key differences in the approach are the use of the signal-to-noise ratio metric instead of the Euclidean distance, as well as the use of the service-user density to form a digital cluster, allowing to choose the size of the digital network cluster, taking into account the requirements for the quality of subscriber traffic and the distribution of users across the territory, including for a variety of services based on the concept of low-delay communication networks. The methodological basis of choice of blockchain system and algorithm of consensus on the basis of requirements and advantages is given. Its use allowed to carry out a preliminary assessment of the use of blockchain technologies for integration into the proposed promising solution.

References

Сайко, В.Г., Одарченко, Р.С. & Баховський, П.Ф. (2021). Мережі мобільного зв’язку нового покоління 4G/5G/6G:монографія. Київ: ТОВ «Про формат». ISBN 978-617-7894-40-6.

Saiko, V., Narytnyk, T., M. Brailovskyi, M. & Nakonechnyi, V. (2019). Radiating telecommunication system of the sub-THz-band to protect objects from unauthorized access. 2019 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology PIC S&T'2019, 698–702.

3GPP TS 37.340 V15.2.0: NR: Multi-connectivity; Overall description, Rel. 15. (2018). Available at. https://www.3gpp.org/ /ftp/Specs/archive/ 37_series /37.340/.

Moltchanov, D., Samuylov, A., Petrov, V. (2018). Improving Session Continuity with Bandwidth Reservation in mmWave Communications. IEEE Wireless Communications Letters, 7, 1–4.

Сайко, В.Г., Наритник Т.М. (2019). Безпроводові системи зв'язку терагерцового діапазону. Німеччина: Видавництво "LAP LAMBERT Academic Publishing RU".

Hu, S., Rusek, F., & Edfors, O. (2018). Beyond Massive MIMO: The Potential of Positioning With Large Intelli gent Surfaces. IEEE Trans. Signal Process., 66 (Apr), 1761–1774.

He, J., Wymeersch, H., Sanguanpuak, T., Silvén, O., & Juntti, M. (2020) Adaptive beamforming design for mmwave RIS-aided joint localization and communication. IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

Wymeersch, H., He J. (2020). Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions. IEEE Veh. Technol. Mag., 15 (4), 52–61.

Heath, R., Gonza´lez-Prelcic, N., Rangan, S., Roh, W. & Sayeed, A.M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10 (3), 436–453.

Wang, Y., Yang, Xu., Zhao, Y., Liu, Y., & Cuthbert, L. (2013). Bluetooth positioning using RSSI and triangulation methods. 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), 837–842.

Huang, C., Alexandropoulos, G.C., Yuen, C., M. Debbah, M. (2019). Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. Proc. IEEE Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC), 1-5.

Huang, C., Mo, R., Yuen, C. (2020). Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning. IEEE J. Sel. Area. Commun., 38 (8), 1839-1850.

Олійник, В.Ф., Кривуца, В.Г., Сайко, В.Г., Булгач, С.В. (2011). Системи та мережі цифрового радіозв’язку: інженерно-технічний довідник. Ніжин: ТОВ “Видавництво “Аспект-Поліграф”.

Сайко, В.Г. (2011). Системи бездротового цифрового радіозв’язку нового покоління: монографія. Київ: ПП “Золоті ворота”. ISBN 978-966-2246-23-0.

Степанов, С.Н. (2015). Теория телетрафика: концепции, модели, приложения. Москва: Горячая линия – Телеком.

Бородин, А.С. (2017). Сети связи пятого поколения как основа цифровой экономики. Электросвязь. (5), 45-47.

Тархов, Д.А. (2014). Нейросетевые модели и алгоритмы: справочник. Москва: Радио и связь.

Табернакулов, А. (2019). Блокчейн на практике. Москва: Альпина Паблишер.

Igor M. Coelho; Vitor N. Coelho; Rodolfo P. Araujo; Wang Yong Qiang; Brett D. Rhodes. (2020). Challenges of PBFT-Inspired Consensus for Blockchain and Enhancements over Neo dBFT. Future Internet , 12 (8).

Бардин, А.П. (2021). Обработка ошибочных ситуаций в больших блокчейн – сетях алгоритмом достижения консенсуса, основанном на решении задачи византийских генералов. Вестник МГТУ имени М.Э.Баумана, 4, 28-37.

C. Huang, C., Zappone, A. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun., 18 (8), 4157–4170, Aug.

Published

2023-04-01

How to Cite

Saiko, V., & Narytnyk, T. (2023). A model for building a wireless terahertz network with increased communication reliability. International Science Journal of Engineering & Agriculture, 2(2), 166–181. https://doi.org/10.46299/j.isjea.20230202.16

Issue

Section

Transport and communications, shipbuilding