Analysis of the stress state of a layer supported by two cylindrical swivel joints
DOI:
https://doi.org/10.46299/j.isjea.20240301.06Keywords:
layer with cylindrical cavities, generalized Fourier method, contact-type conditionsAbstract
Free body diagrams in which connections can be modeled as cylindrical swivel joints are among the most common in machine and aircraft engineering. However, there are no exact calculation methods for such schemes under given contact type conditions. Because of this, the creation of an algorithm for solving such problems is actual goal. The current investigation is devoted to the modeling of an infinite layer supported by two cylindrical swivel joints with parallel horizontal layer surfaces and each other. The swivel joints are represented as cylindrical cavities with specified contact type conditions (normal displacements and tangential stresses along the surface of the cavity are equal to zero). The stresses on the surfaces of the layer are assumed to be known. Two types of coordinate systems are used: Cartesian for the layer and cylindrical for cavities. Boundary conditions are applied to the Lamé equation. Using the generalized Fourier method, the problem is reduced to solving a system of infinite linear algebraic equations, which is solved by the reduction method. The numerical study was carried out with the accuracy of fulfilling the boundary conditions 10-3 for stress values from 0 to 1 at the fourth order of the system of equations. The analysis of the stress state was carried out for the supporting parts of the layer and the upper boundary of the layer. A comparison was made with the results of the study for a similar task with fixed supports. It was noted that the circumferential stresses in the layer along the surface in contact with the swivel joint, when the contact type is fastened, compared to the rigid fastening, has the opposite sign, which can be essential for materials with different tensile-compressive characteristics. The current method can be used to analyze the stress-strain state of a bolted or riveted connection in which the tightening moment changed during operation and the connection turned from rigid to hinged.References
Fesenko, A., Vaysfel’d, N. (2019). The Wave Field of a Layer with a Cylindrical Cavity. In: Gdoutos, E. (eds) Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2019. Corfu, Greece, June 23-26, 2019. Structural Integrity, 8, 277–282. doi: https://doi.org/10.1007/978-3-030-21894-2_51
Fesenko, A., Vaysfel’d, N. (2021). The dynamical problem for the infinite elastic layer with a cylindrical cavity. Procedia Structural Integrity, 33, 509-527
Khechai, A., Belarbi, M.O., Bouaziz, A. et al. (2023). A general analytical solution of stresses around circular holes in functionally graded plates under various in-plane loading conditions. Acta Mech, 234, 671–691. doi: https://doi.org/10.1007/s00707-022-03413-1
Jafari, M., Bayati C., Khoramishad, H., Altenbach, H. (2022). Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Composite Structures, 304, 116403. doi: https://doi.org/10.1016/j.compstruct.2022.116403.
Malits, P. (2021). Torsion of an elastic half-space with a cylindrical cavity by a punch. European Journal of Mechanics - A/Solids, 89, 104308. doi: https://doi.org/10.1016/j.euromechsol.2021.104308
Tekkaya, A.E., Soyarslan, C. (2014). Finite Element Method. Encyclopedia of Production Engineering. Berlin: Springer, 508–514. doi: https://doi.org/10.1007/978-3-642-20617-7_16699
Карвацький А. Я. (2018). Метод скінченних елементів у задачах механіки суцільних середовищ. Лабораторний практикум з навчальної дисципліни. Навч. посіб. Київ: КПІ ім. Ігоря Сікорського, 391
Zasovenko, А., Fasoliak, А. (2023). Mathematical modeling of the dynamics of an elastic half-medium with a cylindrical cavity reinforced by a shell under axisymmetric loads. New Materials and Technologies in Metallurgy and Mechanical Engineering, 2, 67–73
Азаров А.Д., Журавлев Г.А., Пискунов А.С. (2015). Сравнительный анализ аналитического и численного методов решения плоской задачи о контакте упругих цилиндров. Инновационная наука. 1-2, 5–13
Smetankina, N., Kurennov, S., Barakhov K. (2023). Dynamic Stresses in the Adhesive Joint. The Goland-Reissner Model. International Conference on Reliable Systems Engineering, 762, 456–468
Ugrimov, S., Smetankina, N., Kravchenko, O., Yareshchenko, V., Kruszka, L. A. (2021). Study of the Dynamic Response of Materials and Multilayer Structures to Shock Loads. Advances in Mechanical and Power Engineering . CAMPE 2021. Kharkiv, Ukraine, October 18-21. Lecture Notes in Mechanical Engineering. Springer, Cham, 304–313. doi: https://doi.org/10.1007/978-3-031-18487-1_31
Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., Malykhina, A. (2020). Modelling of Bird Strike on an Aircraft Glazing. Integrated Computer Technologies in Mechanical Engineering. Series “Advances in Intelligent Systems and Computing”, 1113, 289-297. doi: https://doi.org/10.1007/978-3-030-37618-5_25
Smetankina, N., Merkulova, A., Merkulov, D., Misiura, S., Misiura, I. (2023). Modelling Thermal Stresses in Laminated Aircraft Elements of a Complex Form with Account of Heat Sources. In: Cioboată, D.D. (eds) International Conference on Reliable Systems Engineering (ICoRSE). Bucharest, Romania, September 7-8, 2022. ICoRSE 2022. Lecture Notes in Networks and Systems, 534, 233–246. doi: https://doi.org/10.1007/978-3-031-15944-2_22
Николаев А. Г., Проценко В. С. (2011). Обобщенный метод Фурье в пространственных задачах теории упругости. Харьков: Нац. аэрокосм. университет им. Н.Е. Жуковского «ХАИ», 344
Nikolaev A. G., Tanchik E. A. (2015). The first boundary-value problem of the elasticity theory for a cylinder with N cylindrical cavities. Numerical Analysis and Applications, 8, 148–158
Nikolaev A. G., Tanchik E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, 57, 1141–1149
Nikolaev A. G., Tanchik E. A. (2016). Model of the Stress State of a Unidirectional Composite with Cylindrical Fibers Forming a Tetragonal Structure. Mechanics of Composite Materials, 52, 177–188
Николаев А. Г., Орлов Е. М. (2012). Решение первой осесимметричной термоупругой краевой задачи для трансверсально-изотропного полупространства со сфероидальной полостью. Проблеми обчисл. механіки і міцності конструкцій, 20, 253 – 259
Ukrayinets, N., Murahovska, O., Prokhorova, O. (2021). Solving a One Mixed Problem in Elasticity Theory for Half-space With a Cy-lindrical Cavity by the Generalized Fourier Method. East.-Eur. J. Enterp. Technol, 2, 48–57. doi: https://doi.org/10.15587/1729-4061.2021.229428
Miroshnikov V. Y. (2020). Stress State of an Elastic Layer with a Cylindrical Cavity on a Rigid Foundation. International Applied Mechanics, 56(3), 372–381
Vitaly, M. (2023). Rotation of the Layer with the Cylindrical Pipe Around the Rigid Cylinder. Advances in Mechanical and Power Engineering . CAMPE 2021. Kharkiv, Ukraine, October 18 - 21, 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, 314–322. doi: https://doi.org/10.1007/978-3-031-18487-1_32
Miroshnikov V.Y., Medvedeva A.V., & Oleshkevich S.V. (2019). Determination of the stress state of the layer with a cylindrical elastic inclusion. Materials Science Forum, 968, 413–420
Miroshnikov, V. (2019). Investigation of the Stress Strain State of the Layer with a Longitudinal Cylindrical Thick-Walled Tube and the Displacements Given at the Boundaries of the Layer. Problemy Mashynobuduvannia – Journal of Mechanical Engineering, 22 (2), 44-52. doi: https://doi.org/10.15407/pmach2019.02.044
Miroshnikov V. Yu. , Savin O. B. , Hrebennikov M. M., Pohrebniak O. A. (2022). Analysis of the stress state of a layer with two cylindrical elastic inclusions and mixed boundary conditions. Problemy Mashynobuduvannia – Journal of Mechanical Engineering, 25(2), 22-29. doi: https://doi.org/10.15407/pmach2022.02.022
Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Demenko, V. F. (2023). Analysis of the stress state for a layer with two incut cylindrical supports. Problemy Mashynobuduvannia – Journal of Mechanical Engineering, 26 (1), 15–22. doi: https://doi.org/10.15407/pmach2023.01.015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oleksandr Denshchykov, Vitaly Miroshnikov
This work is licensed under a Creative Commons Attribution 4.0 International License.