Analysis of the stress-strain state of bearing layer bushings under static load

Authors

DOI:

https://doi.org/10.46299/j.isjea.20240303.05

Keywords:

Layer with cylindrical inclusions, fibrous composite, generalized Fourier method

Abstract

The method is proposed for solving the spatial problem of elasticity theory for a layer on embedded cylindrical supports with bushings. The bushings are considered to be thick-walled tubes. Stresses are given on the flat surfaces of the layer, and displacements are given on the inner surfaces of the tubes. The connection conditions between the layer and the tubes are specified in the form of a rigid connection. The materials of the layer and the tubes are elastic, homogeneous, with different physical and mechanical properties. The layer and the tubes are considered in different local coordinate systems (Cartesian and cylindrical). The Lame equation is used to solve the problem. The combination of basic solutions of the Lame equation in different coordinate systems is carried out using the analytical-numerical generalized Fourier method. Satisfying the boundary conditions and conjugation conditions, a system of linear algebraic equations of the second kind is created, to which the reduction method is applied. Numerical analysis showed high convergence of the results to the exact ones (the accuracy of fulfilling the boundary conditions was 10-5 at the order of the system of equations m = 4 for values from 0 to 1). The analysis of the stressed state was carried out for a plastic bushing of different thicknesses and a layer made of aluminum alloy D16T. The results obtained show that with a decrease in the inner radius of the bushing, the stresses on its surface increase significantly, which should be taken into account when using materials with low physical and mechanical characteristics. The proposed method can be used to obtain high-precision results when designing connections of parts of machines and mechanisms, the model of which is a layer on embedded cylindrical supports with bushings. The numerical results obtained can be used to predict geometric parameters during design.

References

Бояршинов, С.В. (1973). Основы строительной механики машин / Учеб. для машиностроит. спец. вузов. Москва: «Машиностроение», 456 с.

Баженов, В.А., Перельмутер, А.В., Шишов, О.В. (2013). Будівельна механіка. Комп‘ютерні технології і моделювання. Підручник для студентів вищих навчальних закладів. Київ: ВІПОЛ, 896 с.

Tekkaya, A.E., Soyarslan, C. (2014). Finite Element Method. Encyclopedia of Production Engineering. Berlin: Springer, 508–514. doi: https://doi.org/10.1007/978-3-642-20617-7_16699

Static Structural Simulation Using Ansys Discovery. Available at: https://courses.ansys.com/index.php/courses/structural-simulation

Zasovenko, А., Fasoliak, А. (2023). Mathematical modeling of the dynamics of an elastic half-medium with a cylindrical cavity reinforced by a shell under axisymmetric loads. New Materials and Technologies in Metallurgy and Mechanical Engineer-ing, 2, 67–73.

Гузь, А. Н., Кубенко, В. Д., Черевко, М. А. (1978). Дифракция упругих волн. Київ: Наук. Думка, 307 с.

Гринченко, В. Т., Мелешко, В. В. (1981). Гармонические колебания и волны в упругих телах. Київ: Наук. Думка, 284 с.

Николаев, А. Г., Проценко, В. С. (2011). Обобщенный метод Фурье в пространственных задачах теории упругости. Харьков: Нац. аэрокосм. университет им. Н.Е. Жуковского «ХАИ», 344 с.

Nikolaev A. G., Tanchik E. A. (2015). The first boundary-value problem of the elasticity theory for a cylinder with N cylindrical cavities. Numerical Analysis and Applications, 8, 148–158.

Nikolaev, A. G., Tanchik, E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, 57, 1141–1149.

Nikolaev, A. G., Tanchik, E. A. (2016). Model of the Stress State of a Unidirectional Composite with Cylindrical Fibers Forming a Tetragonal Structure. Mechanics of Composite Materials, 52, 177–188.

Ukrayinets, N., Murahovska, O., Prokhorova, O. (2021). Solving a One Mixed Problem in Elasticity Theory for Half-space With a Cylindrical Cavity by the Generalized Fourier Method. East.-Eur. J. Enterp. Technol. vol. 2, pp. 48–57. https://doi.org/10.15587/1729-4061.2021.229428.

Miroshnikov, V. Y. (2020). Stress State of an Elastic Layer with a Cylindrical Cavity on a Rigid Foundation. International Applied Mechanics, 56(3), 372–381.

Miroshnikov, V., Savin, O., Sobol, V., Nikichanov, V. (2023). Solving the Problem of Elasticity for a Layer with N Cylindrical Embedded Supports. Computation, 11, 172. https://doi.org/10.3390/computation11090172

Denshchykov, O., & Miroshnikov, V. (2024). Analysis of the stress state of a layer supported by two cylindrical swivel joints. International Science Journal of Engineering & Agriculture, 3(1), 50–60. https://doi.org/10.46299/j.isjea.20240301.06

Miroshnikov, V. Yu., Medvedeva, A. V., Oleshkevich, S. V. (2019). Determination of the Stress State of the Layer with a Cylindrical Elastic Inclusion. In: International Conference on Actual Problems of Engineering Mechanics, Materials Science Forum 968, 413-420. https://doi.org/10.4028/www.scientific.net/MSF.968.413

Miroshnikov, V., Savin, O., Younis, B., Nikichanov, V. (2022). Solution of the problem of the theory of elasticity and analysis of the stress state of a fibrous composite layer under the action of transverse compressive forces. Eastern-European Journal of Enterprise Technologies, 4 (7 (118)), 23–30. doi: https://doi.org/10.15587/1729-4061.2022.263460

Vitaly, M. (2023). Rotation of the Layer with the Cylindrical Pipe Around the Rigid Cylinder. In: , et al. Advances in Mechanical and Power Engineering . CAMPE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham, 314–322. https://doi.org/10.1007/978-3-031-18487-1_32

Published

2024-06-01

How to Cite

Denshchykov, O., Grebeniuk, I., Savin, O., & Miroshnikov, V. (2024). Analysis of the stress-strain state of bearing layer bushings under static load. International Science Journal of Engineering & Agriculture, 3(3), 51–60. https://doi.org/10.46299/j.isjea.20240303.05