Performance analysis of GO gel composite coating on electro-spark deposited surfaces

Authors

DOI:

https://doi.org/10.46299/j.isjea.20230205.03

Keywords:

GO gel, Composite coating, Raman analysis, Abrasion resistance, Friction coefficient, Surface morphology

Abstract

The uneven surface roughness observed in the electro-spark deposition (ESD) process can be attributed to the unsteady pulsed electrical energy. ESD coating frequently needs to be processed in order to achieve higher surface quality. The surface of the coating undergoes processing techniques such as grinding, ultrasonic processing, and rolling. Because some coatings are hard and the surface hardness is uneven, surface processing is complicated. When a grinder is used for processing, the coating thickness is not easy to control. The product performance is uneven. When non-metallic coatings are used, it can enhance the surface quality of the coating. This study used a composite coating of sodium silicate and lubricating particles. Three coating schemes were studied. Graphene oxide (GO) gel and sodium silicate composite coating have the best overall performance. It can effectively improve the surface quality of the coating, with less roughness and better wear resistance. Graphene oxide gel is used to solve the problem of lubricating particle agglomeration. When it was actually applied to the SKH51 layer, the surface roughness Ra was reduced from 1.086µm to 0.113µm. It is effective in reducing friction and wear.

References

Compton, O. C., & Nguyen, S. T. J. s. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. 6(6), 711-723.

Ding, R., Li, W., Wang, X., Gui, T., Li, B., Han, P., . . . Compounds. (2018). A brief review of corrosion protective films and coatings based on graphene and graphene oxide. 764, 1039-1055.

Dovzhik, M., Tarelnik, V., Marcinkovsky, V., & Pavlov, A. (2016). Restoring machine parts by electroerosive doping and applying polymer composites.

Enrique, P. D., Keshavarzkermani, A., Esmaeilizadeh, R., Peterkin, S., Jahed, H., Toyserkani, E., & Zhou, N. Y. J. A. M. (2020). Enhancing fatigue life of additive manufactured parts with electrospark deposition post-processing. 36, 101526.

Gadalov, V., Romanenko, D., Samoilov, V., Nikolaenko, A., & Grigor’ev, S. J. R. J. o. N.-F. M. (2012). Procedure of evaluating the surface roughness of the electrospark coating after burnishing with mineral ceramics. 53, 348-350.

Gao, Y., Fan, Y., Zhang, J., Liu, X., Wang, N., & Yang, S. J. M. (2021). The study of graphene oxide on the regulations and controls of the sol-gel film structure and its performance. 12(1), 20.

Ghauri, F. A., Raza, M. A., Baig, M. S., & Ibrahim, S. J. M. R. E. (2017). Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. 4(12), 125601.

Huang, J., Zong, C., Shen, H., Cao, Y., Ren, B., & Zhang, Z. J. N. (2013). Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. 5(21), 10591-10598.

Im, H., & Kim, J. J. C. (2012). Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. 50(15), 5429-5440.

Jiang, X., Dai, Y., Xiang, Q., Liu, J., Yang, F., Zhang, D. J. S., & Technology, C. (2021). Microstructure and wear behavior of inductive nitriding layer in Ti–25Nb–3Zr–2Sn–3Mo alloys. 427, 127835.

Kirik, G. V., Gaponova, O. P., Tarelnyk, V. B., Myslyvchenko, O. M., & Antoszewski, B. (2018). Quality Analysis of Aluminized Surface Layers Produced by Electrospark Deposition. Powder Metallurgy and Metal Ceramics, 56(11), 688-696. doi:10.1007/s11106-018-9944-6

Krishnamoorthy, K., Jeyasubramanian, K., Premanathan, M., Subbiah, G., Shin, H. S., & Kim, S. J. J. C. (2014). Graphene oxide nanopaint. 72, 328-337.

Kumar, S. S. A., Bashir, S., Ramesh, K., & Ramesh, S. J. P. i. O. C. (2021). New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings. 154, 106215.

Nakamizo, M., Kammereck, R., & Walker Jr, P. J. C. (1974). Laser Raman studies on carbons. 12(3), 259-267.

Neklyudov, V. V., Khafizov, N. R., Sedov, I. A., & Dimiev, A. M. J. P. C. C. P. (2017). New insights into the solubility of graphene oxide in water and alcohols. 19(26), 17000-17008.

Palmieri, V., Papi, M., Conti, C., Ciasca, G., Maulucci, G., & De Spirito, M. J. E. R. o. M. D. (2016). The future development of bacteria fighting medical devices: the role of graphene oxide. 13(11), 1013-1019.

Ribalko, A. V., Sahin, O., & Korkmaz, K. (2009). A modified electrospark alloying method for low surface roughness. Surface and Coatings Technology, 203(23), 3509-3515. doi:https://doi.org/10.1016/j.surfcoat.2009.05.002

Shi, F., Zhang, Q., Xu, C., Hu, F., Yang, L., Zheng, B., . . . Technology, L. (2022). In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding. 151, 108020.

Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. J. N. M. S. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. 1(1), 31-47.

Sun, R., Chen, C., Ling, W.-J., Zhang, Y.-N., Kang, C.-P., & Xu, Q. (2019). Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 68(10), 104207-104201-104207-104206. doi:10.7498/aps.68.20182224

Tong, L., Zhang, J., Xu, C., Wang, X., Song, S., Jiang, Z., . . . Zhang, H. J. C. (2016). Enhanced corrosion and wear resistances by graphene oxide coating on the surface of Mg-Zn-Ca alloy. 109, 340-351.

Wojtoniszak, M., Chen, X., Kalenczuk, R. J., Wajda, A., Łapczuk, J., Kurzewski, M., . . . Biointerfaces, S. B. (2012). Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. 89, 79-85.

Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H., & Huang, J. J. N. c. (2015). On the origin of the stability of graphene oxide membranes in water. 7(2), 166-170.

Yu, W., Sisi, L., Haiyan, Y., & Jie, L. J. R. a. (2020). Progress in the functional modification of graphene/graphene oxide: A review. 10(26), 15328-15345.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. J. A. m. (2010). Graphene and graphene oxide: synthesis, properties, and applications. 22(35), 3906-3924.

Downloads

Published

2023-10-01

How to Cite

Xin, D., & Tarelnyk, V. (2023). Performance analysis of GO gel composite coating on electro-spark deposited surfaces. International Science Journal of Engineering & Agriculture, 2(5), 20–30. https://doi.org/10.46299/j.isjea.20230205.03