Development of new thermal barrier coatings for aerospace equipment

Authors

  • Viacheslav Syrovatka Department of highly-persistant surface layers material science and engineering Frantsevich Institute for Problems of Materials Science National Academy of Science of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-5034-2656

DOI:

https://doi.org/10.46299/j.isjea.20240301.04

Keywords:

thermal barrier coating, zirconium dioxide, structure, pores, microalloying, ceramic ball

Abstract

Carried out thermocyclic testing of plasma coatings with zirconium dioxide. Weak powders were removed by two methods: cryochemical and total precipitation of hydrooxides with further drying precipitation on the surface. It has been established that in the case of coating with cryochemical powder, since it has a more thin structure and low porosity, a larger thin ball of thermo-growth oxide is formed, which is more suitable for coating with commercial powder CI-7 (ZrO2+7%Y2O3). The warehouse of the alloy on the border of the alloy-scale is attributed to the fluidity of diffusion processes in the alloy and to the oval ceramic ball. Diffusion of acid builds up along the grain boundaries and in other defective sections of the ceramic ball and metal base. In bonding with cym, it is necessary to reveal that the structure of the ball, sawn by the plasma method, may have specific defects in the appearance of various types of non-successions (pores, empty, etc.), the manifestation of which should be produced before the passage of gas-like acid into the material. For such minds, it is important to go through the molding of aluminum oxide (Al2O3), the gap of dissociation is much lower, lower than titanium oxide. It has been established that microalloying of γ-aluminum titanium scandium is safe from heat resistance, refining and modifying the structure from a coherent bond between the changing and matrix phases. The introduction of scandium into the coating makes it possible to change the thermodynamic activities of aluminum and titanium in the presence of aluminum oxide (Al2O3) on the surface of the alloy during the oxidation of the rust, acidic scandium and the formation of dispersed oxide inclusions (for example, Sc2O3).

References

Brady M.A., Brindley W.J., Smalalek J.L., Locci I.E. Oxidation and protection of γ-titanium aluminides // JOM.- 1996.-№11.-P.46-50.

Dettenwanger F., Schman E., Ruhle M. Microstructure Study of Oxidized TiAl // Oxidation of Metals.-1998.-P.269-282.

Gauthier V., Dettenwanger F., Schutze M. Oxidation behavior of γ-TiAl coated with zirconia thermal barriers // Intermetallics.1998.-№10.-P.667-674.

Stuctural intermetallics / By ed. Y.W. Kim, D.M. Dimiduk, M.V. Nathal et al. – TMS: Warrenale (PA),1997.-P.531.

Evans A.G., Mumm D.B., Hutchinson J.W. Mechanisms controlling the durability of thermal barrier coatings // Progress in Materials Science. – 2001.- №46.-P.505-533.

Ekici B. Effects of residual stress patterns on TBC systems // Minerals and Mining.-2004-№2.-P.37-42.

Zhu D., Nesbitt J.A., Barett C.A. Furnace cyclic oxidation behavior of multicomponent low conductivity thermal barriers coatings // J. of Thermal spray technology.-2004.-13,№1.-P.84-92.

Roge B., Fahr A. ,Gigere J.S.R., McRay K.I. Nondestructicve measurement of porosity in thermal barrier coatings // Ibid.-2003.-12,№4.-P.530-535.

Шевченко А.В., Дудник Е.В., Рубан А.К. и др. Функциональные градиентные материалы на основе ZrO2 и Al2O3. Методы получения. // Порошковая металлургия.- 2001.-№3/4.-с.45-55.

Volceanov E., Volceanov A., Pantea M., Apostol A. Effect of some dopants on the structure and morphological characteristics of zirconia powders // J. of the European ceramic society.-1993.-№5.с.115-119.

Pyda W., Haberko K. Zirconia stabillied with a mixture of the rare earth // Ibid.-1992.-№5.-Р.453-459.

Скороход В.В., Уварова І.В., Рагуля А.В. Фізико-хімічна кінетика в наноструктурних системах.-Академперіодика,2001.-180с.

Ильющенко А.Ф., Ивашко В.С., Оковитый В.А., Соболевский С.Б. Теплозащитные покрытия на основе ZrO2.-Минск: НИИ ПМ с ОП, 1998.-128с.

Oliker V.E., Kresanov V.S. Scandium-containing gamma titanium aluminide alloys and coating for aerospace structural parts // Advanced materials and processes for gas turbines. TMS (The Minerals, Metals & Materials Sociaety).-2003.-P.293-300.

Притуляк А.А., Гридасова Т.Я., Алексєєв О.Ф. Дослідження впливу методів отримання на властивості порошків ZrO2, призначених для плазмових покриттів // Металознавство та обробка металів.-2004.-№3.-с.69-71.

Published

2024-02-01

How to Cite

Syrovatka, V. (2024). Development of new thermal barrier coatings for aerospace equipment. International Science Journal of Engineering & Agriculture, 3(1), 24–31. https://doi.org/10.46299/j.isjea.20240301.04