Energy losses in processing department of sugar production

Authors

DOI:

https://doi.org/10.46299/j.isjea.20230201.02

Keywords:

systems of sugar production, processing department, distribution of energy losses

Abstract

The main energy indicators of a typical scheme of sugar production with a productivity of 3000 tons of sugar per day were given Detailed  analysis was made for the heat consumption of the processing department , which is associated with the need to heat the raw material chips from the initial temperature to the temperature of the diffusion process.  The consumption of heat with the selection of diffusion juice is a regenerative loss, since this heat is not removed from the technological process, but only passes from the diffusion compartment to the juice purification compartment. However, it is desirable to carry out the diffusion process in such a way that the temperature of the diffusion juice is as low as possible, since this makes it possible to more fully use low-potential secondary sources of heat (the heat of steam, condensates and steam from saturators), and also allows to increase the rate of evaporation in the MVU. The largest part of the losses can be heat losses with raw pulp. They reach 75...85% of the heat that was spent on heating the chips to the temperature of the diffusion process. If the raw pulp is diverted to the pulp pit, all this heat is completely lost, and in order to ensure the necessary temperature regime of the diffusion process, it is necessary to compensate for these losses. In order to reduce these heat losses, it is advisable to squeeze out the pulp in presses and return the pulp press water to the diffuse process. Pressing the pulp is expedient both from a technological point of view, as it allows to reduce the loss of sugar in the pulp, and from a thermodynamic point of view, because it allows to reduce the loss of heat with the pulp by 1.5...5 times, depending on the degree of its squeezing. The largest heat input to the diffuse process occurs with feed water - 67...73% of the total amount, which corresponds to almost a third of the entire amount of steam coming from the CHP plant to the sugar factory.

References

Мельник С.И., Никульшин В.Р., Денисова А.Е., Белоусов А.В.( 2018). Термодинамический анализ систем производства сахара. Вісник НТУ (ХПІ). 18 (1294), 57-64.

Володимир Нікульшин, Алла Денисова, Сергій Мельнік, Віктор Височин, Анатолій Андрющенко. (2022). Енергетичні характеристики та енергосберегаючі опції в системах виробництва цукру. International Science Journal of Engineering & Agriculture. Vol. 1, 3, 143-151. doi:10.46299/j.isjea.20220103.12.

Штангеєв К.О. (2015). Випарні установки та теплові схеми цукрових заводів. Київ: ЮНІДО, 66.

Славянский А.А. (2015). Промышленное производство сахара: Учебное пособие. Москва: МГУТУ имени К.Г. Разумовского, 255.

Филоненко В.Н., Цыганков Д.Н., Швецов А.А. (2016). Рациональная последовательность энергосберегающих технических решений для сахарного завода. Сахар. 9,. 24–31.

Schulze T. (2015). A look at technological and technical tower extraction trends SUGAR INDUSTRY. Zuckerindustrie, vol. 140, 12, 748–752.

Yousif Karm and Ahmed Rahamatalla. (2013). Previous Study of Elgunied Sugar Factory. R. Deshmukh, A. Jacobson, D. Kammer, Thermal gasification or direct combustion? Comparison of advanced cogeneration systems in the sugarcane industry. Biomass Bioenerg, 55, 163–174.

R. Palacois-Bereche, A. Ensinas, M. Modesto, S.A. Nebra. (2014). New alternatives for the fermentation process in the ethanol production from sugarcane: extractive and low temperature fermentation. Energy, 70, 595–604.

T.Taner, M. Sivrioglu.(2015). Data on energy, exergy analysis and optimization for a sugar factory. Data in Brief. 2015, 5, 408–410.

Tolga Taner, Mecit Sivrioglu.(2015). Energy exergy analysis and optimisation of a model sugar factory in Turkey. Energy, 93, 641–654.

R. Palacios-Bereche, A. Ensinas, M. Modesto, S.A. Nebra.(2015). Doble-effect distillation and thermal integration applied to the ethanol production process. Energy, 82, 512–523.

Мельник С.И., Никульшин В.Р., Денисова А.Е. (2017). Потенциалы энергосбережения в энерготехнологических системах производства сахара. Праці VII Міжнарод. конф. «Муніципальна енергетика: Проблеми, рішення». Миколаїв. 21-22 грудня, 31-33.

Nikulshin V.R., Denysova A.E., Melnik S.I., Budarin V.A., Bilousova N.G.(2020). First section temperature drop local optimization for sugar production multistage evaporation system. Proceding. of the 5-th Int. Scientific and Practical Conference “Dynamics of the development of world science”. Vancouver, Canada, January 22-24, 226-233.

Nikulshin V.R., Denysova A.E., Melnik S.I., Wysochin V.V., Andrjuschenko A.M. (2020). Local optimum of second section for sugar production evaporation system. Proceding of the 5-th Int. Scientific and Practical Conference “Perspective world science and education”. Osaka, Japan, January 29-31, 2020, 142-147.

Nikulshin V.R., Denysova A.E., Melnik S.I., Andrjuschenko A.M., Budarin V.A. (2020). Local optimum of third section for sugar production evaporation system. // Proceding of the 2-nd Int. Scientific and Practical Conference “Eurasian scientific congress”. Barcelona, Spain, February 24-25, 2020, 152-156.

Nikulshin V.R., Denysova A.E., Melnik S.I., Wysochin V.V. (2021). Optimization of the fifth section for sugar production evaporation system. Magyr Tudomanyos Journal, 50, 59-62.

Nikulshin V.R., Denysova A.E., Melnik S.I., Andrjuschenko A.M., Wysochin V.V. (2021). Optimisation of sections for sugar production evaporation system. In collective monograph: Technical research and development / Kalafat K., Vakhitova L., Drizhd V., etc. Іnternational Science Group. Boston: Primedia eLaunch, 234-237.

Published

2023-02-01

How to Cite

Nikulshin, V., Denysova, A., Melnik, S., Wysochin, V., & Andryushchenko, A. (2023). Energy losses in processing department of sugar production. International Science Journal of Engineering & Agriculture, 2(1), 10–18. https://doi.org/10.46299/j.isjea.20230201.02