Dark matter as the binding energy of matter

Authors

DOI:

https://doi.org/10.46299/j.isjea.20220105.11

Keywords:

Dark mass, binding energy, open systems, closed systems, galaxy, star, atomic nucleus, quark, preon

Abstract

The problem with dark matter or dark mass is that, when observed in experiments, it has no theoretical basis. Attempts to explain it by the presence of exotic material objects, new elementary particles or a change in gravity formulas lead to inconsistent results. The paper offers a physical explanation of the phenomenon of the existence of dark mass. At the same time, the following are used: the known fact of equivalence of mass and energy; the theory of open complex (or composite) systems, to which the galaxy belongs; theory of closed systems (star, atomic nucleus, nucleon, quark, preon); the hypothesis that the primary kinetic energy of particles that arose during the Big Bang is the source of the energy field of connection. It is shown that black mass is nothing more than the binding energy of matter inside the galaxy divided by the square of the speed of  light. Approximately, at least a fivefold excess of the mass of the galaxy over the sum of the masses of its stars indicates that the value of the binding energy of the matter of the galaxy is at least five times greater than the total rest energy of its stars. The practical possibility of studying the binding energy inside the matter of the galaxy is due to the fact that the subtraction of the sum of the rest masses of the stars (closed systems) from the rest mass of the galaxy, as an open system, is not accompanied by the subtraction of the corresponding values of the binding energies. This is explained by the fact that the expressions for bond energies in open and closed systems in the corresponding formulas have opposite signs. Therefore, on the contrary, subtracting the sum of the masses of the stars from the mass of the galaxy leads to a practically doubled value of the binding energy (or dark matter). A comparison of the values of the binding energies associated with the kinetic energy of the motion of the stars with the binding energy inside the atom and atomic nucleus shows their insufficiency to explain the amount of observed dark mass. It is assumed that the amount of binding energy sufficient for this is inside the quarks consisting of preons, as evidenced by the experimental values of the preon pulses. The definition of dark mass through the binding energy of the matter of the galaxy explains why it has only gravitational properties, does not participate in electromagnetic interaction, does not glow and does not absorb light and, accordingly, is inaccessible to direct observation.

References

Гальпер А. М., Гробов А. В., Свадковский И. В. (2014). Эксперименты по исследованию природы тёмной материи: Учебное пособие. — М.: МИФИ, 2014.

Грин Б. Р. (2009). Ткань космоса: Пространство, время и структура реальности / Перевод Юрия Артамонова книги «The fabric of the cosmos: space, time and the texture of reality / Brian R. Greene». Random House, Inc., New York, 2004.

Жарков В.Н. (1983). Внутреннее строение Земли и планет. М.: Наука, Гл. редакция физ.-мат. лит., 416 с.

Закрытая система. (2021). https://ru.wikipedia.org/wiki.

Захаров В.Д. (2003). Тяготение. От Аристотеля до Эйнштейна. – Москва: БИНОМ. Лаб. знаний.– 278 с.

Карпенко И.В. (2012).Синергетическая тектоника. 1. Физическая природа глобальных цикличностей // Геофизический журнал. – Т. 34. – № 5. – С. 60–71.

Карпенко, І. (2022). НОВЕ У ЗАКОНІ ТЯЖІННЯ НЬЮТОНА І ПРИСКОРЕНЕ РОЗШИРЕННЯ ВСЕСВІТУ. International Science Journal of Engineering & Agriculture, 1(3), 161–182.

Карпенко, І. (2022). ДО ПРИРОДИ СИЛИ ПРИСКОРЕНОГО РОЗШИРЕННЯ ВСЕСВІТУ І ФІЗИЧНОГО МЕХАНІЗМУ УТВОРЕННЯ «КОСМІЧНОЇ ПАВУТИНИ». International Science Journal of Engineering & Agriculture, 1(3), 229–246.

Карпенко, І. (2022). Інерція як наслідок доповнюваності руху тіла в просторі та часі. International Science Journal of Engineering & Agriculture. Vol. 1, No. 4, 2022, pp. 1-13. doi: 10.46299/j.isjea.20220104.01.

Карпенко, І. (2022). Просторовоподібний континуум як фізична реальність Всесвіту. International Science Journal of Engineering & Agriculture, 1(4), 56–71. https://doi.org/10.46299/j.isjea.20220104.06

Кварк.(2021). https://ru.wikipedia.org/wiki.

Кирпичики Вселенной. (2018). Что такое Бозон Хиггса. https://www.youtube.com/watch?v=h97LAv5eu5g&t=1818s

Кузьмичев В. Е. (1989).Законы и формулы физики / Отв. ред. В. К. Тартаковский. – Киев: Наук. думка. – 864 с.

Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — 534 с.

Логунов А. А. (2006). Релятивистская теория гравитации. — M.: Наука, — 253 с.

Милгром М. (1983). Модифицированная ньютоновская динамика – MOND. [https://ru.wikipedia.org/wiki.

Наша галактика. (2012). Взгляд со стороны (HD) https://www.youtube.com/watch?v=eXUsE1MCBUs

Новиков И. Д. Эволюция Вселенной – 2-е изд., перераб. – М.: Наука. Главная редакция физико-математической литературы, 192 с.

Пантелеев В. Л.(2001). Физика Земли и планет. Курс лекций. Московский государственный университет им. М.В. Ломоносова. Физический факультет. Москва. 117 с.

Попов Сергей. (2021). Лекция «Черные дыры»/ https://www.youtube.com/watch?v=Bqf4oiG4tp0

Попов Сергей . (2019). Лекция «10 главных загадок Астрофизики» https://www.youtube.com/watch?v=gM_5iLJ3bMc&t=6561s

Преон. (2021). https://ru.wikipedia.org/wiki.

Рубаков В. (2019). Лекция «Валерий Рубаков. Загадки Вселенной». https://www.youtube.COM/watch?v=p7Pj1nkXZzs

Сасскинд Л. (2013). Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики. – СПб; Питер,. – 448 с.

Темная материя. (2021). https://ru.wikipedia.org/wiki

Темная материя. (2018). Space Room. https://www.youtube.com/watch?v=jtL1dFY4Pg0

Sanders R. H. (2010).The Dark Matter Problem: A Historical Perspective. — Cambridge University Press.

Majumdar D. (2014). Dark Matter: An Introduction. — CRC Press.

Published

2022-12-01

How to Cite

Karpenko, I. (2022). Dark matter as the binding energy of matter. International Science Journal of Engineering & Agriculture, 1(5), 86–105. https://doi.org/10.46299/j.isjea.20220105.11