Inertia as a consequence of complementarity of body movement in space and time




Inertia, space, time, complementarity of motion, acceleration, gravitational model, universe, space research


In theoretical physics, the problem of inertia was and remains a controversial issue, since the origin of the source of the inertial force remains unknown. The solution presented in the paper equates inertia with the resistance of energetically negative space. In the obtained expression for the acceleration of inertia there is no dependence on the mass. Therefore, attempts to find out the physical essence of inertia within the framework of modern theories of gravity were unsuccessful. In the proposed version, inertia is the property of the energetically negative part of the space-time continuum without external influences on the body to ensure its state of rest or uniform rectilinear motion, and in the presence of external forces to prevent the body's velocity from changing. That is, inertia is a property of space itself. The study of inertia in this work is carried out within the following scientific paradigm. The universe is considered as an energetically neutral system. The positive part of whose energy is represented by matter and radiation and, accordingly, by a time-like continuum. The negative part of the energy is represented by the energy of antiparticles uniformly distributed in space, which ensures the existence of a space-like state of the continuum. The property of mutual complementarity of movement in space and movement in time is used. In particular, the square of the speed of the body's movement along the world line is equal to the sum of the squares of the speed along the spatial and temporal coordinate axes. Using this property, it is justified that the force acting along the spatial axis of coordinates is accompanied by the appearance of a force along the time axis of the opposite direction or the force of inertia. The force of inertia is aimed at returning the continuum to the energy-minimum light-like state. The acceleration of inertia is considered as the force of resistance of the space-like state of the continuum (space) to the force that appeared in its time-like state (in the material world). Calculating the acceleration of inertia requires a change in the coordinate system: the spatial coordinate axis becomes temporal and, conversely, temporal - spatial. This means that the acceleration of inertia is related to that part of the structure of the continuum, which is called the spatial world, that is, with space. And since the acceleration of inertia has the opposite sign to the usual acceleration, it is interpreted as the resistance of space to the accelerated movement of the body, that is, as the acceleration of inertia. It is shown that at the initial moment of motion, the acceleration of inertia prevails and the body, instead of accelerating forward at a positive value of the usual acceleration, moves backward, and when decelerating, on the contrary, continues to move forward. This effect is explained by the relativistic nature of time and the fact that the application of force transfers the body from a time-like world to a space-like world with a changed coordinate system. Causal relations also change accordingly. The force applied to the body first changes the speed of movement along the time axis of coordinates, and this change is the cause of the change in the speed of movement of the body along the spatial axis. In other words, in the presence of a force acting on the body, the primary is motion in time, and the secondary is motion in space.


Грин Б. Р. (2009). Ткань космоса: Пространство, время и структура реальности / Перевод Юрия Артамонова книги «The fabric of the cosmos: space, time and the texture of reality / Brian R. Greene». Random House, Inc., New York, 2004.

Захаров В.Д. (2003). Тяготение. От Аристотеля до Эйнштейна. Лаб. Знаний, 278 с.

Карпенко, І. (2022). НОВЕ У ЗАКОНІ ТЯЖІННЯ НЬЮТОНА І ПРИСКОРЕНЕ РОЗШИРЕННЯ ВСЕСВІТУ. International Science Journal of Engineering & Agriculture, 1(3), 161–182. вилучено із

Карпенко, І. (2022). ДО ПРИРОДИ СИЛИ ПРИСКОРЕНОГО РОЗШИРЕННЯ ВСЕСВІТУ І ФІЗИЧНОГО МЕХАНІЗМУ УТВОРЕННЯ «КОСМІЧНОЇ ПАВУТИНИ». International Science Journal of Engineering & Agriculture, 1(3), 229–246. вилучено із

Ишлинский, А. Ю. (1987). Классическая механика и силы инерции. М.: «Наука», 320 с.

Кузьмичев, В. Е. (1989). Законы и формулы физики/Отв. ред. ВК Тартаковский. Киев: Наукова думка, 864 с.

Ландау, Л. Д., & Лифшиц, Е. М. (2001). Теория поля.–Издание 8-е, стереотипное. М.: Физматлит, 534 с.

(1987). Лекции по теории относительности и гравитации: современный анализ проблемы.

Логунов А. А. (1987). «Лекции по теории относительности и гравитации. Современный анализ проблемы», М.:" Наука"

Логунов А. А. (2006). Релятивистская теория гравитации. M.: Наука, 253 с.

Паули, В. (1983). Теория относительности. Наука. Пер. с англ./Под ред. С. Хокинга, В. Израэля. М.: Мир, 455 с.

Пайс А. (1989). Научная деятельность и жизнь Альберта Эйнштейна: Пер. с англ./Под ред. акад. А. А. Логунова. М.; Наука. Гл. ред. физ.-мат. лит, 568 с.

Сасскинд, Л. (2013). Битва при чёрной дыре. Моё сражение со Стивеном Хокингом за мир, безопасный для квантовой механики. СПб.: Питер, 448 с.

Седов Л. И. (1992). Об основных моделях механики. М.: МГУ, 1, 6-17, 151 с.

Тарг С. М. (1994). Сила инерции. Большая Российская энциклопедия, том 4.



How to Cite

Karpenko І. (2022). Inertia as a consequence of complementarity of body movement in space and time. International Science Journal of Engineering & Agriculture, 1(4), 43–55.