The use of artificial intelligence of unmanned vessels to determine obstacles when swimming

Authors

  • Ivan Kalinichenko Department of Heat Engineering, Kherson Educational and Scientific Institute of Admiral Makarov National Shipbuilding University, Kherson, Ukraine https://orcid.org/0000-0001-6765-6168
  • Yevgeny Bohuslavskyi Department of Heat Engineering, Kherson Educational and Scientific Institute of Admiral Makarov National Shipbuilding University, Kherson, Ukraine

DOI:

https://doi.org/10.46299/j.isjea.20240303.09

Keywords:

artificial intelligence, unmanned ship, motion controller, automatic ship collision prevention, deep neural network, navigation

Abstract

Today, human activity increasingly depends on the ability to effectively use information. A modern specialist of any profile must be able to receive, process and use information using computers and other technical and mobile means and devices. Currently, a kind of technical revolution is taking place, related to the penetration of advanced information technologies such as Big Data, Internet of Things and Blockchain into various areas of our lives, and even into the maritime industry, which has traditionally lagged behind other industries in the application of the latest IT developments . Already today, the implementation of Artificial Intelligence (Artificial Intelligence) in navigation and control of the movement of the vessel is taking place. One of the most promising and possible for use on unmanned vessels is the method of deep learning of neural networks, which uses the "end-to-end learning" algorithm, capable of obtaining knowledge obtained through experience and the use of controllers to minimize the error when modeling the navigation map of the movement of an unmanned vessel. The authors of this work considered the methods of data recognition in shipping to build the trajectory of an unmanned vessel with artificial intelligence. In order to prevent collisions and build an accurate movement trajectory without additional fluctuations, the authors proposed the use of artificial intelligence with motion controllers with deep neural networks to identify various vessels using pattern recognition. It is shown that machine learning algorithms are capable of making intelligent decisions, but they can be complicated for unstructured data. These problems can be solved with the help of deep learning networks, in which a complex situation is solved using a multi-level hierarchical approach.

References

Thombre S., Bhuiyan M., Eliardsson P., Gabrielsson B., Pattinson M., Dumville M., Fryganiotis D., Hill S., Manikundalam V., Pölöskey M., Lee S., Ruotsalainen L., Söderholm S., Kuusniemi H. (2018). GNSS threat monitoring and reporting: Past, present, and a proposed future The Journal of Navigation. 71. (3). 513–529. DOI: 10.1017/S0373463317000911.

Jheng S.L., Jan S.S., Chen Y.H., Lo S. (2020). 1090 MHz ADS-B-Based Wide Area Multilateration System for Alternative Positioning Navigation and Timing. IEEE Sensors Journal. 20. (16). 9490–9501. DOI:10.1109/JSEN.2020.2988514.

International Convention for the Safety of Life at Sea (SOLAS 74) consolidated edition. (2014). London. IMO. 474 р.

Swift, A. J., and T. J. Bailey. (2004). Bridge Team Management. Practical Guide. Nautical Institute. 117 р.

Lahtinen J., Banda V., Kujala P., Hirdaris S. (2019). The Risks of Remote Pilotage in an Intelligent Fairway–preliminary considerations. Proceedings of the International Seminar on Safety and Security of Autonomous Vessels (ISSAV) and European STAMP Workshop and Conference (ESWC). Sciendo. 48–57.

Rokseth B., Haugen O.I., Utne I.B. (2019). Safety Verification for Autonomous Ships. MATEC Web of Conferences. EDP Sciences. 273. 02002. DOI:10.1051/matecconf/201927302002.

Sakhre V. S. Jain, V. S. Sapkal, Agarwal D. P. (2015). Fuzzy counter propagation neural network control for a class of nonlinear dynamical systems. Computational intelligence and neuroscience. 2015. DOI: 10.1155/2015/719620.

Radchenko, M., Radchenko, A., Mikielewicz, D., Kosowski, K., Kantor, S., Kalinichenko I. (2021). Gas turbine intake air hybrid cooling systems and their rational designing. Modern Power Systems and Units. V International Scientific and Technical Conference. Kraków, Poland, Edited by Rerak, M.; Majdak, M.; E3S Web of Conferences. 323. id.00030. 5 p. https://doi.org/10.1051/e3sconf/202132300030

Вагущенко Л.Л., Цимбал М.М. (2007). Системи автоматичного управління рухом судна. Одеса: Фенікс. 3-е вид., перероб. і доп. 328 с.

Konovalov, D., Radchenko, M., Kobalava G., Gorbov, V. Kalinichenko I. (2022). Development of the Gas Dynamic Cooling System for Gas Turbine Over-Expansion Circuit. Advances in Design, Simulation and Manufacturing V. DSMIE Proceedings of the Lecture Notes in Mechanical Engineering. Springer, Cham. 249-258. https://doi.org/10.1007/978-3-031-06044-1_24.

Radchenko R., Kornienko V., Radchenko M., Mikielewicz D., Andreev. A. Kalinichenko I. (2021). Cooling intake air of marine engine with water-fuel emulsion combustion by ejector chiller. Modern Power Systems and Units. V International Scientific and Technical Conference. Kraków, Poland, Edited by Rerak, M.; Majdak, M.; E3S Web of Conferences. 323. id.00031. 5 p. https://doi.org/10.1051/e3sconf/202132300031.

Андреев АА, Смагин ДН, Калиниченко ИВ. (2004). Совершенствование схем утилизации низкопотенциальной теплоты судовых дизельных установок на основе низкокипящих жидкостей. Збірник наукових праць НУК. Миколаїв НУК. 4. 397.

Горбов В.М., Ратушняк І.О., Трушляков Є.І., Чередніченко О.К. (2007). Суднова енергетика та Світовий океан: Навчальний посібник. Миколаїв: НУК. 596 с.

Jian-Hao X. (2011). Application of artificial neural network (ANN) for prediction of maritime safety. International Conference on Information and Management Engineering. Springer, Berlin, Heidelberg. 34–38. DOI: 10.1007/978-3-642-24097-3_6.

Radchenko, R., Pyrysunko, M., Kornienko, V., Gorbov, V. Kalinichenko I. (2021). Effect of Utilization Exhaust and Recirculation Gases of Ship Diesel Engine in Absorption Chiller. Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems. Springer, Cham. 367. 509 – 519. https://doi.org/10.1007/978-3-030-94259-5_43.

Радченко Р.Н., Богданов Н.С., Калиниченко И.В. (2015). Основы рационального проектирования системы охлаждения наддувочного воздуха судового малооборотного дизеля эжекторным теплотрансформатором. Авиационно-космическая техника и технология. Харків: ХАІ. 5 (122). 65-68. http://nbuv.gov.ua/UJRN/aktit_2015_5_13.

Olindersson F., Bruhn W.C., Scheidweiler T., Andersson A. (2017). Developing a Maritime Safety Index using Fuzzy Logics. TransNav, International Journal on Marine Navigation and Safety of Sea Transportation. 11. (3). 469–475. DOI: 10.12716/1001.11.03.12.

Published

2024-06-01

How to Cite

Kalinichenko, I., & Bohuslavskyi, Y. (2024). The use of artificial intelligence of unmanned vessels to determine obstacles when swimming. International Science Journal of Engineering & Agriculture, 3(3), 92–103. https://doi.org/10.46299/j.isjea.20240303.09

Issue

Section

Transport and communications, shipbuilding