Modern wireless communication technologies in the tasks of automation of technological processes
DOI:
https://doi.org/10.46299/j.isjea.20250403.11Keywords:
Wireless networks, Internet of Things, Wi-Fi, Bluetooth, ZigBee, LoRaWAN, NB-IoT, 5G, data security, cybersecurityAbstract
The paper examines existing modern wireless communication technologies that significantly expand the possibilities of automation of production processes, their main capabilities and characteristics. Implementing such technologies helps reduce the cost of maintaining cable networks and allows enterprises to adapt to changes quickly. Wireless technologies such as Wi-Fi, Bluetooth, ZigBee, LoRaWAN, NB-IoT, and 5G are the primary tools for implementing intelligent control and monitoring systems in industrial environments. A comparative analysis of existing wireless communication technologies is conducted. Technological progress in wireless communication systems allows the automation of production processes at a new level, increasing efficiency, reducing costs, and ensuring reliable equipment operation under challenging conditions. Special attention is paid to aspects of cybersecurity, including an analysis of the main threats (traffic interception, Man-in-the-Middle attacks, DoS/DDoS, exploitation of wireless protocol vulnerabilities) and methods for their elimination (WPA3 encryption, Zero Trust Security, AI-based cybersecurity). The prospects for integrating artificial intelligence (AI), 6G, quantum cryptography, and blockchain solutions to improve the security of wireless networks are also considered. The results demonstrate that using hybrid wireless solutions that combine different technologies can optimize industrial processes, ensure high productivity, and minimize cyber risks. Further research will be aimed at improving the energy efficiency of wireless IoT systems and implementing advanced security mechanisms in wireless industrial networks.References
Danbatta S.J., Varol A. (2019). Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. 2019 7th International Symposium on Digital Forensics and Security (ISDFS), 1-5.
Naidu, G.A., & Kumar, J. (2019). Wireless Protocols: Wi-Fi SON, Bluetooth, ZigBee, Z-Wave, and Wi-Fi. Lecture Notes in Networks and Systems. Innovations in Electronics and Communication Engineering, 229-239.
Lee J. S., Su Y. W., Shen C.С. (2007) A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 46-51, doi:10.1109/IECON.2007.4460126.
Gupta M., Singh S. (2021). A Survey on the ZigBee Protocol, It’s Security in Internet of Things (IoT) and Comparison of ZigBee with Bluetooth and Wi-Fi. Applications of Artificial Intelligence in Engineering, 473-482.
Das L., Raman R., Chandan, P. Kaur A., Singh A., Rana B. D. (2023) Shivhare, Advancements in Wireless Network Technologies for Enabling the (IoT): A Comprehensive Review, 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 807-814, doi:10.1109/IC3I59117.2023.10397952.
Voronko, I. (2024). The security of IoT systems in railway transport. Transport Systems and Technologies, (43), 90–99. https://doi.org/10.32703/2617-9059-2024-43-7
Baronti P., Pillai P., Chook V.W.C., Chessa S., Gotta A., Fun Hu Y. (2007) Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards, Computer Communications, 30 (7), 1655-1695.
Kumar N.V., Bhuvana C., Anushya S. (2017). Comparison of ZigBee and Bluetooth wireless technologies-survey. 2017 International Conference on Information Communication and Embedded Systems (ICICES), 1-4.
Mandanna C.M., Mrs. Suman, H., Aiyanna T. (2021). LoRaWAN: an evolution of wi-fi from short range to long range. EPRA IJRD, 6 (7), 611-616.
LTE-M vs NB-IoT – A Guide Exploring the Differences between LTE-M and NB-IoT, URL: https://iot.telenor.com/iot-insights/lte-m-vs-nb-iot-guide-differences
Lin H., Jung C., Huang T., Hendrick H., Wang Z. (2020). NB-IoT Application on Decision Support System of Building Information Management. Wireless Personal Communications, 114, 711 - 729.
Kengesbayeva S., Taissariyeva K., Jobalayeva G. (2023). Evaluation of the Effectiveness of IoT Implementation Based on the 5G Network. Trudy Universiteta, 92 (3), 434-438.
Li T. at el. (2006) A new MAC scheme for very high-speed WLANs / T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, T. Turletti / IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Buffalo-NY, USA, June 2006, 171-180.
Litvinov A. L. (2018) Teoriya sistem masovogo obslugovuvannya /HarkIv: HNUMG im. O. M. Beketova, 141 s. [in Ukranian]
Zaharchenko M.V ta in. (2010) Matematichns osnovi optimizatsiyi telekomunikatsiynih sistem: pidruchnik / Zaharchenko M.V., Gorohov S.M., Balan M.M., Gadzhiev M.M., Korchinskiy V.V., Lozhkovskiy A.G. Odesa: ONAZ im. O.S. Popova, 240 s. [in Ukranian]
Lazebniy V.S. ta in. (2018) Doslidzhennya realnoyi propusknoyi spromozhnosti bezprovodovoyi informatslynoyi merezhi spetsifikatsiyi IEEE 802.11n/ Lazebniy V.S., In Chenlyan, Omelyanets O.O. / Vcheni zapiski Tavriyskogo natsionalnogo universitetu im. V.I.Vernadskogo Seriya: Tehnichni nauki, 29 (68). No.5 Chastina 1, 155-160. [in Ukranian]
ITU-T, FG NET-2030 Technical Report on Network 2030. (2020) Additional Representative Use Cases and Key Network Requirements for Network 2030 (June 2020). URL: www.itu.int/dms_pub/itu-t/opb/fg/T-FG-NET2030-2020-SUB.G1-PDF-E.pdf
Zhurakovskiy B. Yu., Zeniv I.O. (2020) Komp’yuterni merezhi: navch. posib. Kiyiv: KPI im. Igorya SIkorskogo, 336 s. [in Ukranian]
Krivchenkov А., Sedykh D.(2015) Analysis Of Packets Delay In Wireless Data Networks / Transport and Telecommunication, 16(4), 330–340.
Laktionov, I., Zhabko, O., Diachenko, G. (2024). Rezultaty analizu efektyvnosti bezdrotovykh tekhnolohii obminu danymy pid chas pobudovy informatsiinykh system ahromonitorynhu. Computer Science, Software Engineering and Cyber Security, 3, 108–115, DOI: https://doi.org/10.32782/IT/2024-3-11
Sakovskiy A.A. ta In. (2022) Osoblivosti zastosuvannya bezpilotnih litalnih aparatIv organami ta pidrozdilami politsiyi / A.A. Sakovskiy, S.M. Naumenko, S.I. Kravchenko, I. M. EfImenko ta in. Kiyiv: Nats. akad. vnutr. sprav, 72 s. [in Ukranian]
Zhurakovskiy B. Yu. Zeniv I.O. (2021). Tehnologiyi internetu rechey: navch. posib. Kiyiv: KPI im. Igorya SIkorskogo, 271 s. [in Ukranian]
Jhanjhi N., Humayun M., Almuayqil S.N. (2021). Cyber security and privacy issues in Industrial Internet of Things. Computer Systems Science and Engineering, 37(3), 361-380. DOI: https://doi.org/10.32604/csse.2021.015206.
Digital Twins. URL: https://www.it.ua/knowledge-base/technology-innovation/cifrovoj-dvojnik-digital-twin.
He D., Chan S., Guizani M. (2017). Cyber Security Analysis and Protection of Wireless Sensor Networks for Smart Grid Monitoring. IEEE Wireless Communications, 24, 98-103.
Gorbenko I. D. in. (2011) Metodi perehoplennya informatsiyi u sistemah kvantovoyi kriptografiyi / I. D. Gorbenko, E. V. Ivanchenko, S. V. Karpenko, S. O. Gnatyuk / Zahist Informatsiyi, 2, 121-129. [in Ukranian]
Definitions of software-defined radio (SDR) and cognitive radio system (CRS). ITU. URL: https://www.itu.int/pub/R-REP-SM.2152.
Bezdrotove shifruvannya. Viznachennya Shifruvannya BezprovIdnih Merezh. [in Ukranian] URL: https://www.vpnunlimited.com/ua/help/cybersecurity/wireless-encryption?srsltid=AfmBO orV0Ckm5GfdmfHiL9d8rKUSWW7K3R7wk6uFM6SgIH82EUrtLkgx.
Understanding Man-In-The-Middle Attacks. Part 3: Session Hijacking. TechGenix. URL: https://techgenix.com/understanding-man-in-the-middle-attacks-arp-part3/.
Kozel V. (2019) Klasifikatsiya ta rekomendatsiyi zahistu vid MITM atak / Problemi Informatsiynih tehnologIy, 25, 58-65. [in Ukranian]
DoS I DDoS Ataka: Zagrozi ta Zahist. [in Ukranian] URL: https://cyberset.com.ua/network/attacks-vs-defense/dos-ddos-ataka-zahist.
Korolkov R., Kutsak S., Voskoboinyk V.(2021) Analysis of deauthentication attack in IEEE 802.11 networks and a proposal for its detection Visnik Harkivskogo natsionalnogo universitetu im. V. N. Karazina seriya «Matematichne modelyuvannya. Informatsiyni tehnologiyi. Avtomatizovani sistemi upravlinnya», 50, 58-70. DOI: 10.26565/2304-6201-2021-50-06.
Korolkov R.Yu.,. Laptev S.O (2022) Naturne modelyuvannya ataki «WAR DRIVING» na bezdrotovu merezhu. Kiberbezpeka: osvIta, nauka, tehnika, 2 (18), 99-107. [in Ukranian] DOI: 10.28925/2663-4023.2022.18.99107.
Korolkov R.Yu. (2021) Stsenariy ataki z vikoristannyam nesanktsionovanoyi tochki dostupu u merezhah IEEE 802.11 Kiberbezpeka: osvIta, nauka, tehnIka, 3(11), 144-154. [in Ukranian] DOI: 10.28925/2663-4023.2021.11.144154
Skidan, D. Galchinskiy, L. (2024). Otsinka rivnya zahischenosti protokoiIv bezpeki dlya bezprovidnih merezh. Collection of Scientific Papers «SCIENTIA», (June 7, 2024; Antwerp, Belgium), 113–117. [in Ukranian] URL: https://previous.scientia.report/index.php /archive/article/view/1893.
Shabala E., Korniychuk B. (2024). Metodologiya otsinyuvannya bezpeki IoT na promislovih ob’ektah. Upravlinnya rozvitkom skladnih sistem (60), 146–155. DOI: https://doi.org/10.32347/2412-9933.2024.60.146-155 [in Ukranian]
William P., Rai A.K., Madan P., Kumar C.P., Shrivastava A., Rana, A. (2023). Analysis of Blockchain Technology to Protect Data Access Using Intelligent Contract Mechanism for 5G Networks. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), 6, 1651-1657.
Vorohob M., Kirichok R., Yaskevich V., Dobrishin Yu., Sidorenko S. (2023). Suchasni perspektivi zastosuvannya kontseptsiyi ZERO TRUST pri pobudovi politiki informatsIynoyi bezpeki pidpriemstva. Kiberbezpeka: osvita, nauka, tehnika, 1(21), 223-233. [in Ukranian] DOI: https://doi.org/10.28925/2663-4023.2023.21.223233.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Iryna Voronko, Galyna Holub

This work is licensed under a Creative Commons Attribution 4.0 International License.