Motion tracking systems in rehabilitation: a comparative analysis of sensor technologies, algorithmic methods, and clinical relevance

Authors

DOI:

https://doi.org/10.46299/j.isjea.20250406.06

Keywords:

digital sensor systems, motion tracking, clinical rehabilitation, kinematic analysis, spatiotemporal parameters, machine learning, explainable artificial intelligence, hybrid systems, telemonitoring

Abstract

Motor impairments are a common consequence of neurological and orthopedic conditions and often require long-term monitoring and rehabilitation. Digital motion-tracking systems — including optical marker-based solutions, optical markerless systems based on red-green-blue cameras and depth sensors, wearable inertial measurement modules, and their hybrid combinations — enable quantitative assessment of body kinematics, detection of compensatory movement patterns, and objective tracking of patient recovery. This review systematises modern sensor technologies for motion tracking in rehabilitation, evaluates their metrological characteristics, algorithmic approaches for data processing and interpretation, and determines their clinical relevance and development pathways. A comparative analysis of four main classes of systems shows that optical marker-based technologies provide the highest spatial accuracy but remain limited by high cost and laboratory dependence; markerless optical systems demonstrate moderate accuracy yet offer promising opportunities for telerehabilitation; inertial measurement modules provide mobility and reproducibility but require drift-compensation algorithms; hybrid multisensor architectures combine the advantages of both optical and inertial approaches and achieve high accuracy even under dynamic conditions. The review also analyses sensor-fusion algorithms such as extended Kalman filters and Madgwick filters, methods for computing kinematic parameters, and machine-learning models for automated motion interpretation, including explainable artificial-intelligence frameworks that improve model transparency and support clinical decision-making. Clinical-validity assessment indicates that commonly used metrics such as range of motion, gait-phase characteristics, and angular parameters show high consistency, whereas more complex indicators may vary and require cautious interpretation. Key challenges include the lack of standardised measurement protocols, environmental influences, limited interpretability of algorithms, and difficulties integrating systems into clinical workflows. Promising future directions include the development of multimodal datasets, adaptive sensor-fusion strategies, transparent artificial-intelligence analytics, and scalable home-based rehabilitation solutions, highlighting the potential of integrated multisensor technologies to support personalised rehabilitation.

References

World Health Organization. (2023). Package of interventions for rehabilitation: Module 2—Musculoskeletal conditions. World Health Organization. https://www.who.int/publications/i/item/9789240071124.

Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13–31.

Ray, L. S. S., Cao, L., Huang, Z., et al. (2024). A comprehensive evaluation of marker-based, marker-less and wearable motion capture systems. Frontiers in Computer Science. https://doi.org/10.3389/fcomp.2024.1379925.

Scataglini, S., Abts, E., Van Bocxlaer, C., Van den Bussche, M., Meletani, S., & Truijen, S. (2024). Accuracy, validity, and reliability of markerless camera-based 3D motion capture systems versus marker-based 3D motion capture systems in gait analysis: A systematic review and meta-analysis. Sensors, 24(11), 3686. https://doi.org/10.3390/s24113686.

Prisco, G., Pirozzi, M. A., Santone, A., Esposito, F., Cesarelli, M., Amato, F., & Donisi, L. (2024). Validity of wearable inertial sensors for gait analysis: A systematic review. Diagnostics, 15(1), 36. https://doi.org/10.3390/diagnostics15010036.

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 873. https://doi.org/10.3390/s18030873.

Ma, M., Proffitt, R., & Skubic, M. (2018). Validation of a Kinect V2-based rehabilitation game. PLOS ONE, 13(8), e0202338. https://doi.org/10.1371/journal.pone.0202338.

Cho, Y.-S., et al. (2018). Validity and reliability of wearable IMU-based gait analysis. Sensors, 18(9), 2613. https://doi.org/10.3390/s18092613.

Zhu, Y., Li, H., Wu, X., & Chen, N. (2024). Accuracy validation of a sensor-based inertial measurement unit and motion capture system for assessment of lower limb muscle strength in older adults—A novel and convenient measurement approach. Sensors, 24(18), 6040. https://doi.org/10.3390/s24186040.

Hicks, H. N., Chen, H., & Harper, S. A. (2025). Sensor fusion for enhancing motion capture: Integrating optical and inertial motion capture systems. Sensors, 25(15), 4680. https://doi.org/10.3390/s25154680.

Scataglini, S., Abts, E., Van Bocxlaer, C., Van den Bussche, M., Meletani, S., & Truijen, S. (2024). Accuracy, validity, and reliability of markerless camera-based 3D motion capture systems versus marker-based 3D motion capture systems in gait analysis: A systematic review and meta-analysis. Sensors, 24(11), 3686. https://doi.org/10.3390/s24113686.

Webster, D., & Celik, O. (2014). Systematic review of Kinect-based applications in medical care. Journal of NeuroEngineering and Rehabilitation, 11, 108. https://doi.org/10.1186/1743-0003-11-108.

Perrott, M. A., Pizzolato, C., Diamond, L. E., Killen, B., & Saxby, D. J. (2017). Comparison of lower limb and trunk kinematics between marker-based and markerless motion capture systems. Gait & Posture, 52, 57–61. https://doi.org/10.1016/j.gaitpost.2016.10.020.

Ma, M., Proffitt, R., & Skubic, M. (2018). Validation of a Kinect V2-based rehabilitation game. PLOS ONE, 13(8), e0202338. https://doi.org/10.1371/journal.pone.0202338.

Hicks, H. N., Chen, H., & Harper, S. A. (2025). Sensor fusion for enhancing motion capture: Integrating optical and inertial motion capture systems. Sensors, 25(15), 4680. https://doi.org/10.3390/s25154680.

Mündermann, L., Corazza, S., & Andriacchi, T. P. (2006). The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of NeuroEngineering and Rehabilitation, 3, 6. https://doi.org/10.1186/1743-0003-3-6.

Ray, L. S. S., Cao, L., Huang, Z., Zhou, B., Suh, S., & Lukowicz, P. (2024). A comprehensive evaluation of marker-based, markerless and wearable motion capture systems. Frontiers in Computer Science, Article 1379925. https://doi.org/10.3389/fcomp.2024.1379925.

van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819. https://doi.org/10.1080/17461391.2018.1463397.

D’Haene, M., Chorin, F., Colson, S. S., Guérin, O., Zory, R., & Piche, E. (2024). Validation of a 3D markerless motion capture tool using multiple pose and depth estimations for quantitative gait analysis. Sensors, 24(22), 7105. https://doi.org/10.3390/s24227105.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172-186. https://doi.org/10.1109/TPAMI.2019.2929257.

Avogaro, A., Cunico, F., Rosenhahn, B., & Setti, F. (2023). Markerless human pose estimation for biomedical applications: A survey. Frontiers in Computer Science, 5, article 1153160. https://doi.org/10.3389/fcomp.2023.1153160.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Weygandt Mathis, M., & Bethge, M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts. Nature Neuroscience, 21, 1281-1289. https://doi.org/10.1038/s41593-018-0209-y.

Webster, D., & Celik, O. (2014). Systematic review of Kinect applications in elderly care and stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 11, 108. https://doi.org/10.1186/1743-0003-11-108.

Pfister, A., West, A. M., Bronner, S., & Noah, J. A. (2014). Comparative abilities of Microsoft Kinect and Vicon 3-D motion capture for gait analysis. Journal of Medical Engineering & Technology, 38(5), 274-280. https://doi.org/10.3109/03091902.2014.909540.

Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Effect of local magnetic field disturbances on inertial measurement units accuracy. Applied Ergonomics, 63, 123–132. https://doi.org/10.1016/j.apergo.2017.04.011.

Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens MVN: Full 6 DOF human motion tracking using miniature inertial sensors [Technical report]. Xsens Technologies B.V. Retrieved from https://www.researchgate.net/publication/239920367_Xsens_MVN_Full_6DOF_Human_Motion_Tracking_Using_Miniature_Inertial_Sensors.

Sabatini, A. M. (2011). Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors, 11(2), 1489–1525. https://doi.org/10.3390/s110201489.

Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 55(4), 609–619. https://doi.org/10.1007/s11517-016-1537-2.

Hicks, H. N., Chen, H., & Harper, S. A. (2025). Sensor fusion for enhancing motion capture: Integrating optical and inertial motion capture systems. Sensors, 25(15), 4680. https://doi.org/10.3390/s25154680.

Spilz, A., Oppel, H., Werner, J., Stucke-Straub, K., Capanni, F., & Munz, M. (2025). A full-body IMU-based motion dataset of daily tasks by older and younger adults. Scientific Data, 12, Article 4818. https://doi.org/10.1038/s41597-025-04818-y.

Prisco, G., Pirozzi, M. A., Santone, A., Esposito, F., Cesarelli, M., Amato, F., & Donisi, L. (2024). Validity of wearable inertial sensors for gait analysis: A systematic review. Diagnostics, 15(1), 36. https://doi.org/10.3390/diagnostics15010036.

Cho, Y.-S., Jang, S., Cho, J., Kim, M., Lee, H. D., Lee, S. Y., & Park, S. J. (2018). Evaluation of validity and reliability of inertial measurement unit-based gait analysis systems. Annals of Rehabilitation Medicine, 42(6), 872–883. https://doi.org/10.5535/arm.2018.42.6.872.

Kaku, A., Parnandi, A., Venkatesan, A., Pandit, N., Schambra, H., & Fernandez-Granda, C. (2020). Towards data-driven stroke rehabilitation via wearable sensors and deep learning. In Proceedings of the 5th Machine Learning for Healthcare Conference (Vol. 126, pp. 143–171). PMLR.

Mundt, M., Koeppe, A., David, S., et al. (2020). Estimation of gait mechanics based on simulated and measured IMU data using a neural network approach. Frontiers in Bioengineering and Biotechnology, 8, 41. https://doi.org/10.3389/fbioe.2020.00041.

Lam, W. W. T., Tang, Y. M., & Fong, K. N. K. (2023). A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 20, 57. https://doi.org/10.1186/s12984-023-01186-9.

Milošević, B., Leardini, A., & Farella, E. (2020). Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the art and an experimental comparison. Biomedical Engineering Online, 19, 25. https://doi.org/10.1186/s12938-020-00762-7.

Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Gait & Posture, 54, 80–86. https://doi.org/10.1016/j.gaitpost.2017.02.029.

Nagorny, P., Kevelham, B., Chagué, S., & Charbonnier, C. (2025). A comprehensive review of real-time multi-view multi-person markerless motion capture. ACM Computing Surveys. https://doi.org/10.1145/3757733.

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds.). (2020). Cochrane handbook for systematic reviews of interventions (2nd ed.). John Wiley & Sons.

Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: A key to evidence-based decisions. ACP Journal Club, 123(3), A12–A13.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71.

McKenzie, J. E., Brennan, S. E., Ryan, R. E., Thomson, H. J., Johnston, R. V., & Thomas, J. (2020). Chapter 3: Defining the criteria for including studies and how they will be grouped for the synthesis. In Cochrane Handbook for Systematic Reviews of Interventions (2nd ed.).

Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews? Research Synthesis Methods, 11(2), 181–217. https://doi.org/10.1002/jrsm.1378.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/BM.2012.031.

Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for meta-analysis in medical research. Wiley.

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., … Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898. https://doi.org/10.1136/bmj.l4898.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. (2009). Introduction to meta-analysis. Wiley.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160.

Mobini, A., Behzadipour, S., & Saadat, M. (2015). Test–retest reliability of Kinect’s measurements for the evaluation of upper body recovery of stroke patients. BioMedical Engineering OnLine, 14, Article 75. https://doi.org/10.1186/s12938-015-0070-0.

Pellano, K. N., Strümke, I., & Ihlen, E. A. F. (2024). From movements to metrics: Evaluating explainable AI methods in skeleton-based human activity recognition. Sensors, 24(6), 1940. https://doi.org/10.3390/s24061940.

Pellano, K. N., Strümke, I., & Ihlen, E. A. F. (2024). Evaluating explainable AI methods in skeleton-based human activity recognition. Sensors, 24(6), 1940. https://doi.org/10.3390/s24061940.

Zheng, X. (2024). Explainable artificial intelligence in movement sciences: Focusing on gait analysis in healthy older adults and patients with back pain (Doctoral dissertation, University of Groningen). https://doi.org/10.33612/diss.958165448.

Alufaisan, Y., Marusich, L. R., Bakdash, J. Z., Zhou, Y., & Kantarcioglu, M. (2021). Does explainable artificial intelligence improve human decision-making? In Proceedings of the 35th AAAI Conference on Artificial Intelligence (pp. 6618-6626). AAAI Press. https://doi.org/10.1609/AAAI.V35I8.16819.

Rong, Y., Leemann, T., Nguyen, T.-T., Fiedler, L., Qian, P., Unhelkar, V. V., Seidel, T., Kasneci, G., & Kasneci, E. (2024). Towards human-centered explainable AI: A survey of user studies for model explanations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(4), 2104–2122. https://doi.org/10.1109/TPAMI.2023.3331846.

Pardell M. et al. (2024). Movement Outcomes Acquired via Markerless Motion Capture Systems Compared with Marker-Based Systems for Adult Patient Populations: A Scoping Review. Biomechanics, 4(4), 618-632. https://doi.org/10.3390/biomechanics4040044.

Cheng, X., Jiao, Y., Meiring, R. M., Sheng, B., & Zhang, Y. (2025). Reliability and validity of current computer vision based motion capture systems in gait analysis: A systematic review. Gait & Posture, 120, 150–160. https://doi.org/10.1016/j.gaitpost.2025.04.016.

Lam W. W. T., Tang Y. M., & Fong K. N. K. (2023). A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 20, 57. https://doi.org/10.1186/s12984-023-01186-9.

Bae, K., Lee, S., Bak, S.-Y., Kim, H. S., Ha, Y., & You, J. H. (2024). Concurrent validity and test reliability of the deep learning markerless motion capture system during the overhead squat. Scientific Reports, 14(1), Article 29462. https://doi.org/10.1038/s41598-024-79707-2.

Callejas-Cuervo, M., Espitia-Mora, L. A., & Vélez-Guerrero, M. A. (2023). Review of optical and inertial technologies for lower body motion capture. Journal of Hunan University (Natural Sciences), 50(6), 103–116. https://doi.org/10.55463/issn.1674-2974.50.6.11.

Canali, S., Schiaffonati, V., & Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness. PLOS Digital Health, 1(10), e0000104. https://doi.org/10.1371/journal.pdig.0000104.

Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on wearable technology in sports: Concepts, challenges and opportunities. Applied Sciences, 13(18), 10399. https://doi.org/10.3390/app131810399.

Rodgers, M. M., Pai, V. M., & Conroy, R. S. (2019). Wearable technologies for active living and rehabilitation. Journal of Rehabilitation and Assistive Technologies Engineering, 6, 1–13. https://doi.org/10.1177/2055668319839607.

Downloads

Published

2025-12-01

How to Cite

Stepanenko, N., & Dubko, A. (2025). Motion tracking systems in rehabilitation: a comparative analysis of sensor technologies, algorithmic methods, and clinical relevance. International Science Journal of Engineering & Agriculture, 4(6), 72–100. https://doi.org/10.46299/j.isjea.20250406.06

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.