Assessment of the state of scientific research on the implementation of electroporation technology in surgical practice

Authors

  • Andrii Dubko Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute; Department of Biomedical Engineering National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kiev, Ukraine https://orcid.org/0000-0001-6070-3945
  • Nataliia Chvertko Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute, Kiev, Ukraine https://orcid.org/0000-0002-7559-7716

DOI:

https://doi.org/10.46299/j.isjea.20240302.02

Keywords:

irreversible electroporation, "Nanoknife", oncological diseases, thermal ablation, domestic equipment

Abstract

The urgent problem of modern times is a significant increase in cancer diseases and mortality from them, which has been proven in numerous scientific works. Existing methods of treatment: thermal ablation, including laser, cause various complications that accompany the process of surgical treatment of tumors and complicate the recovery process of patients. Electroporation is the newest method of non-thermal ablation, while complications inherent to thermal ablation are not observed.A well-known device for performing the electroporation process is the "Nanoknife" manufactured by the company "Angio Dynamics" (USA), which is used for certain the latest domestic equipment for the implementation of the irreversible electroporation method to improve the effectiveness of the treatment of cancer patients. Devices that are widely used in European clinical practice are also not universal. Further developments in this field are the creation of the latest domestic equipment for the implementation of the irreversible electroporation method to improve the effectiveness of the treatment of cancer patients.

References

Панченков Д.Н., Иванов Ю.В., Пикунов Д.Ю., Забозлаев Ф.Г., Нечунаев А.А., Кочиева М.П., Алексанян Г.Б. (2013). Необратимая электропорация метастазов колоректального рака в печень с использованием системы "NANOKNIFE". Клиническая практика №1, 37-42.

Патент RU 2711511. Устройство для электропорации. Авторы: Панченков Д. Н., Астахов Д. А., Иванов Ю. В., Притыко А. П., Белецкий И. Б., Дыдыкин С. С., приор. 19.12.2018, опубл. 17.01.2020 Бюл. № 2.

Marsanic P., Mellano A., Sottile A., De Simone M. (2017). Irreversible electroporation as treatment of locally advanced and as margin accentuation in borderline resectable pancreatic adenocarcinoma. Med. Biol. Eng. Comput. 55 (7): 1123–1127. DOI: 10.1007/s11517-016-1603-9.

Martin R.C. 2nd, Kwon D., Chalikonda S., Sellers M., Kotz E., Scoggins C., McMasters K.M., Watkins K. (2015). Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann. Surg. 262 (3): 486–494; discussion 492–494. DOI: 10.1097/SLA.0000000000001441.

Martin R.C. 2nd, McFarland K., Ellis S., Velanovich V. (2012). Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J. Am. Coll. Surg. 215 (3): 361–369.

Астахов Д.А., Панченков Д.Н., Иванов Ю.В., Шабловский О.Р., Кедрова А.Г., Соловьев Н.А., Нечунаев А.А., Злобин А.И., Лебедев Д.П. (2018). Необратимая электропорация при местнораспространенном раке поджелудочной железы. Анналы хирургической гепатологии, том 23, №2, 59-68.

Шигимага В. О. (2014). Біотехнічний комплекс імпульсної кондуктометрії і електроманіпуляції з клітинами тварин: автореф. дис. На здобуття д-ра техн. наук : спец. 05.11.17 «Біологічні та медичні прилади і системи». Харків, 2014. – 36 с.

Kramar P., Miklavi A., Lebar M. (2007). Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Bioelectrochemistry. Vol. 70, No. 1, 23–27.

Pavlin M., Kotnik T., Miklavi D., Kramar P. et al. (2008). Electroporation of Planar Lipid Bilayers and Membranes. Advances in Planar Lipid Bilayers and Liposomes. Vol. 6, 165–226.

IGEA Clinical Biophysics. (2015). Clinoporator model EPS02 - User Manual / IGEA Clinical Biophysics..

Systems for treating tissue sites using electroporation. Pub. No.: US 20080132884 A1,

Chenguo Yao. (2017). Bipolar Microsecond Pulses and Insulated Needle Electrodes for Reducing Muscle Contractions during Irreversible Electroporation. IEEE Transactions on Biomedical Engineering, Vol. 64, № 12, 2924 – 2937.

Current cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment. Pub. No.: US 20130197425 A1.

Патент RU 2738572. (2020)Устройство для электропорации. Авторы: Панченков Д. Н., Астахов Д. А., Забозлаев Ф. Г., Иванов Ю. В., Дыдыкин С. С., Белецкий И. Б., Притыко А. П., приор. 27.03.2020, опубл. 14.12.2020 Бюл. № 35.

Mojca Pavlin et al. (2011). Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer in vitro. Journal of Visualized Experiments , 55, 1-4.

Device and method for destruction of cancer cells. Pub. No.: US 7722606 B2.

Шигимага В. А., Мегель Ю. E., Коваленко С. В. , Коваленко С. Н. (2017). Моделирование и анализ параметров электропорации мембраны биологической клетки в импульсном электрическом поле с изменяемой напряженностью. Радіоелектроніка, інформатика, управління. № 4, 57-65.

Handbook of Electroporation . (2017). Ed. Miklavcic D. Springer International Publishing Switzerland, 2316 p.

Pakhomov A. G., Miklavi D., Markov M. S. (2010). Advanced Electroporation Techniques in Biology and Medicine. NY. : CRC Press, 528 p.

Weaver J. C., Chizmadzhev Yu. (2007). Electroporation. Biological and Medical Aspects of Electromagnetic Fields. NY. : CRC Press, 293–321.

Shigimaga V. A. (2013) Pulsed conductometer for biological cells and liquid media. Measurement Techniques. N.Y. : Springer, Vol. 55, No. 11, 1294–1300.

Polak A., Tarek M., Tomsic M. et al. 2014). Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochem. No. 100, 18–26.

Miklavcic D. ( 2012). Network for Development of Electroporation- Based Technologies and Treatments. Journal of Membrane Biology(. Vol. 245, 91–598.

Morshed B. I., Shams M., Mussivand T. ( 2013). Deriving an electric circuit equivalent model of cell membrane pores in electroporation. Biophysical Reviews and Letters, Vol. 8, No. 1, 21–32.

Mossop B. J., Barr R. C., Zaharoff D. A., Yuan F. ( 2004). Electric fields within cells as a function of membrane resistivity – a model study. IEEE Transactions on NanoBioscience. Vol. 3, No. 3, 225–231.

Published

2024-04-01

How to Cite

Dubko, A., & Chvertko, N. (2024). Assessment of the state of scientific research on the implementation of electroporation technology in surgical practice. International Science Journal of Engineering & Agriculture, 3(2), 21–39. https://doi.org/10.46299/j.isjea.20240302.02