Effect of Ti additive and preparation procedure on the temperature and decomposition kinetics of the MgH2 phase in the synthesized mechanicals alloys

Authors

DOI:

https://doi.org/10.46299/j.isjea.20230202.12

Keywords:

mechanical alloy, hydrogen-sorption properties, kinetics, thermal stability, hydride phase

Abstract

The mechanical alloy Mg + 10 wt.% Ti and two mechanical alloys MgH2 + 10 wt.% Ti were synthesized by a reactive mechanical alloying (RMA) method, but in different ways. The influence of doping and the preparation procedure of mechanical alloys (MAs) on thehydrogen sorption properties, temperature and decomposition kinetics of their MgH2 phase was investigated by isobaric thermodesorption spectroscopy at a constant hydrogen pressure of 0.1 MPa. The desorption kinetics of the milled MgH2 + 10 wt.% Ti are faster than in the case of the ball milled Mg + 10 wt.% Ti. It was found that the manner of obtaining a mechanical alloys by reactive milling of MgH2 +10 wt. % Ti powder mixture rather than Mg +10 wt. % Ti powder mixture  to improve the kinetic characteristics. The role of Ti as an alloying element in improving the hydrogen desorption kinetics of МAs obtained by various preparation procedures was studied. The stabilizing effect of Ti on the nanocrystalline structure and growth of the crystallites (grains) of the MgH2 phase during the cycling was also evaluated. It has been established the practical absence of the influence of Ti additive and the manner of obtaining MAs on the its thermodynamic stability.

References

Ivanov E.Yu., Konstanchuk I.G., Stepanov А.А. Mechanical alloys magnesium –new materials for hydrogen energy. Report of the Academy of Sciences. 1987. Vol. 286. Nos. 2. P. 385-388.

Chen Y., Williams J.S. Formation of metal hydrides by mechanical alloying J. Alloys Comp. 1995. No. 217. P. 181-184.

Liang G., Huot J., ВoilyS. Сatalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2 – Tm (TM=Ti, V, Mn, Fe, Ni) systems. J. Alloys Compd. 1999. Vol.292 . P. 247-252.

Huot J., Liang G., Schulz R. Mechanically alloyed metal hydride systems, Structure of nanocomposite metal hydrides. Appl. Phys. A .2001. 72 .P. 187-195; doi: 10.1016/S0925-8388(02)00839-3.

Ershova O.G., Dobrovolsky V.D., Solonin Yu.M., Khyzhun O.Yu., Koval A.Y. Influence of Ti, Mn, Fe, Ni addition upon thermal stability & decomposition temperature of the MgH2 phase of alloys synthesized by reactive mechanical alloys. J. Alloys Compd. 2008. Vol. 464. P. 212-218; DOI: 10.1016/j.jall-com.2007.10.064.

Stampfer J.F., Holley C.E., Suttle J.F.The Magnesium-Hydrogen System. J. Am. Chem. Soc. 1960. Vol. 82. P. 3504 – 3507;doi: 10.1021/ja01499a006.

Pitt M.P., Paskevicius M., Webb C.J., Sheppard D.A., Buckley C.E., Mac A., Gray E. The synthesis of nanoscopic Ti-based alloys and their effectson the MgH2 system compared with the MgH2 + 0.01Nb2O5benchmark. Int. J. of Hydrogen energy. 2012. Vol. 37. P. 4227-4237; doi:10.1016/j.ijhydene .2011.11.114.

Sesha Srinivasan, Dervis Emre Demirocak, Ajeet Kaushik, Meenu Sharma,Ganga Ram Chaudhary, Nicoleta Hickman and Elias Stefanakos. Reversible Hydrogen Storage Using Nanocomposites. Appl. Sci. 2020. Vol.10. P. 4618- 4629; doi:10.3390/app10134618.

Ershova O.G., Dobrovolsky V.D., Solonin Yu. M., Khyzhun O.Yu, Koval A.Yu. The effect of Al on thermal stability and kinetics of decomposition of MgH2 prepared by mechanochemical reaction at different conditions. Materials Chemistry and Physics. – 2015. – 162. – p.408 – 416.

Dobrovolsky V.D., Ershova O.G., Solonin Yu.M., Khyzhun O.Y. Influence of titanium and iron additives to magnesium upon hydrogen-sorption properties, thermal stability and kinetics of hydrogen desorption from MgH2 phase of mechanical alloy. Powder Metallurgy & Metal Ceramics. 2016. Vol. 55, Nos. 7.P. 477-488; DOI: 10.1007/S11106-016-9830-z.

Huot J., Pelletier J.F., Lurio L.B., Sutton M., Schulz R. Investigation of degydrogenation mechanism of MgH2–Nb nanocomposites. J. Alloys Compd. 2003.Vol. 348. P. 319-324.

Shang C.X., Bououdina M., Song Y. Guo Z.X. Mechanical alloying and electronic simulation of (MgH2 + M) system (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. J. Hydrogen Energy. 2004.Vol. 29, P. 73-80,

Bassetti A., Bonetti E., Pasquini L., Montone A., Grbovic J., Antisari V. Hydrogen desorption from ball milled MgH2 catalysed with Fe. Eur. Phys.B .2005.Vol. 43 P. 19-27.

Xie L., Liu Y.and Zhang X. Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles. J. Alloys Compd., 2009. Vol. 482, pp. 388-392.

Attuluri R., Ba Vijay, Nagaraju D. A Mini Review: Magnesium Hydrides for Hydrogen Storage. Int. Journal of ChemTech Research. 2016.Vol.6. Nos. 7. P. 3451-3455.

Sun Ze, Lu Xiong, Michael Nyahuma Farai, Yan Nianhua, Xiao Jiankun, Su Shichuan, Liuting Zhang. Enhancing Hydrogen Storage Properties of MgH2 by Transition Metals and Carbon Materials: A Brief Review. J. Frontiers in Chemistry. 2020. Vol. 8. P. 552-566.

Chengshang Zhou, Jingxi Zhang, Robert C. Bowman, Jr. and Zhigang Zak Fang. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics chemistry. 2021. Vol. 9. - 36. P. 9050036- 42; doi.org/10.3390/inorganics9050036.

Zahra Akbarzadeh Fatemeh, Rajabi Mohammad. Mechanical alloying fabrication of nickel/cerium/MgH2 nanocomposite for hydrogen storage: Molecular dynamics study and experimental verification. J. Alloys Comp.. 2022. Vol. 899. P. 163280-163291;doi.org/10.1016/j.jallcom.2021.163280.

Hanada N., Ichikawa T., Fujii H. Catalytic effect of Ni nano-particle and Nb oxide on H-desorptionproperties in MgH2 prepared by ball milling. J.Alloys Compd. 2005.Nos 404-406.P. 716-719.

Borgschulte A., Rector J.H., Dam B. The role of niobium oxide as a surface catalyst for hydrogen absorption. Catalysis 2005.Vol. 235.P. 353-358.

Hugg P.-A, Dornheim M.,Klassen T. Thermal stability of nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 2005.Nos. 404-406. P. 499-502.

Aguey-ZinsouK.-F., Ares- Fernandes J.R., KlassenT. Using MgO to improve the (de)hydriding properties of magnesium. Mater. Res. Bull. 2006. Vol. 412. P. 1118-1126.

Varin R.A., CzujkoT., Wasmund E.B., WronskiZ.S. Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and inco micrometric and nanometric – NiT.J. Alloys Compd.2007.Vol. 446-447.P. 63-65.

Polanski M., Bystrzycki J. Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. J. Alloys Compd.2009. Vol. 486. P. 697-701.

PatahA., Takasaki A. Szmyd J.S.Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2.J. Hydrogen Energy. 2009 Vol. 34, P. 3032-3037.

Kosuke Kajiwara, Hisashi Sugime, Suguru Noda, NobukoHanada. Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube. J. Alloys Compd.2022. Vol. 893. P. 162206. doi.org/10.1016/j.jallcom.2021.162206.

Ma L.P., KangX.D., DaiH.B., Liang Y., Fang Z.Z.,Wang P.J., Wang P., Cheng H.M. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogenn sorption kinetics of MgH2: Catalytic role of fluorine anion.Acta Materials. 2009.Vol. 57, P. 2250-2258.

DeleddaS., Borissova A.and. PoinsignononC. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine.J. Alloys Compd. 2005.Vol. 404-406. P. 409-412,

L. Xie, Y. Liu, Y.T. Wang, J. Zheng and X.G. Li. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3.Acta Materials.2007. Vol. 55. P. 4585-4591.

S. Agarwal, A. Aurora and A.Jain. Catalytic effect of ZrCrNi alloy on hydriding properties of MgH2. J. Hydrogen Energy. 2009. Vol. 34, pp. 9157-9162.

Ma L.P., Wang P., Cheng H.-M. Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. J. Hydrogen Energy. 2010. Vol. 35, pp. 3046-3050.

MahmoudiN.,Kaflou A., SimchiA. Hydrogen desorption properties of MgH2 –TiCr1.2Fe0.6 nanocomposite prepared by highenergy mechanical alloying.Power Sources. 2011. Vol. 196.P. 4604-4608.

HaghparastaM. R., RajabiaM. Hydrogen Desorption Properties of MgH2- 5at% Ti-Cr-Mn-Fe-V Composite via Combined Vacuum Arc Remelting and Mechanical Alloying.Procedia Materials ScienceScience Direct 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. 2015.Р. 605–610. Published by Elsevier Ltd.doi:10.1016/j.mspro.2015.11.091.

LiP.C., ZhangJ.W.,HuJ.T., HuangG.,XieL., XiaoH.Y., ZhouX.S., XiaY.H., ZhangJ.C.,ShenH.H. Effects of deuterium content on the thermal stability and deuterium site occupancy of TiZrHfMoNb deuterides. J. of Solid State Chemistry. 2021. Vol. 297. Р. 121999.

Chengshang Zhou, Zhigang Zak Fang, Jun Lu, Xiangyi Luo, Chai Ren, Peng Fan, Yang Ren,and Xiaoyi Zhang. Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys.J. Phys. Chem. C . 2014. 118.P. 11526−11535. dx.doi.org/10.1021/jp501306w.

Liu R, Zhao Y, Chu T. Theoretical exploration of MgH2 andgraphene nano-flakes in cyclohexane: proposing a newperspective toward functional hydrogen storage material.Chem Commun. 2015.Vol. Nos. 51.24 P. 29-32.

Xia G, Tan Y, Chen X, Sun D, Guo Z, Liu H, et al.Monodisperse magnesium hydride nanoparticles uniformlyself-assembled on graphene. Adv Mater. 2015. 27:5981e8.

Liu G, Wang Y, Jiao L, Yuan H. Understanding the role of fewlayergraphene nanosheets inenhancing the hydrogensorption kinetics of magnesium hydride. ACS Appl MaterInterfaces.2014. No 6. P. 11038-11046.

Liu G, Wang Y, Jiao L, Yuan H. Solid-state synthesis ofamorphous TiB2 nanoparticles on graphene nanosheets withenhanced catalytic dehydrogenation of MgH2. Int J. HydrogenEnergy. 2014. No 39. P. 3822 - 3829.

Ivanov E., Konstanchuk I., Stepanov A., Boldyrev V. Magnesium mechanical alloys for hydrogen storage. J. Less-Comm. Metals. 1987. Vol. 131. P. 25 – 29.

BobetJ.- L., EvenC., NakamuraY., AkibaE., DarrietB.Synthesis of Mg & Ti – hydride via reactive mechanical alloying.J. Alloys Compd. 2000.Vol. 298.P. 279-284.

M.Y. Song. Effectofvtchanicalalloying onthehydrogenstorage characteristicsof Mg-xwt % Ni (x = 0, 5, 10, 25 and 55) mixtures. Int. J. Hydrogen Energy. 1995. Vol. 20, Nos. 3. P. 221 - 226.

BobetJ.-L., Akiba E., Darriet B. Influence of 3d-metal addition on MgH2 synthesizeStudy of Mg-M (M=Co, Ni, Fe) mixture elaborated by reactive mechanical alloying hydrogen sorption properties.J. Hydrogen Energy. 2001. Vol. 26, pp. 493-501.

Bystrzycki J., Czujko T., Varin R.A.Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties. J. Alloys Compd. 2005.Vol. 404-406, P. 507-510.

ErshovaO.G., Dobrovolsky V.D.,SoloninYu. M. About manner and mechanisms of reduction of thermal firmness of Mg, Ti, Y-based mechanical alloys.Carbon Nanomaterials in Clean Energy Hydrogen Systems: The NATO Science for Peace and Security Programme; B. Baranowski et al., Eds.; Springer Science + Business Media B.V. 2008. P. 429 - 436.

ErshovaO.G., Dobrovolsky V. D.,SoloninYu. M.Thermal stability and hydrogen sorption properties of the MgH2 hydride derived by the reactive milling of the Mg +10 % wt. Ti mixture. Carbon Nanomaterials in Clean Energy Hydrogen Systems: The NATO Science for Peace and Security Programme; B. Baranowski et al., Eds.; Springer Science + Business Media B.V., 2008. P. 467 - 472.

Lei Z, Liu Z., Chen Y. Cyclic hydrogan properties of Mg milled with nikel nano-powders and NiO. J. Alloya Comp.2009. Vol.470, Nos. P. 470 – 472; doi.org/10.10.16/i.jallcom.

MilaneseC., GirellaA., BruniG., BerbenniV., CofrancescoP., MariniA., Villa M.,MatteazziP. Hydrogen storage in magnesium–metal mixtures: Reversibility, kinetic aspects and phase analysis. J. Alloys Compd. 2008. Vol. 465, pp. 396 – 405, 2008.doi;10.1016/i.jallcom.2007.10.091.

Sung NamK., HwanBaek Sung, DanielR., Hong S.-H., SongM.Y.Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti.J. Hydrogen Energy. 2008. Vol. 33.P. 4586 – 4592. doi;10.1016/j.ijhydene.2008.05.097.

Song Y., Guo Z.X., Yang R. Influence of titanium on the hydrogen storage characteristics of magnesium hydride;first principles investigation. Materials science & Engineering A. 2004. Vol. 365. P. 73 – 79. doi:10.1016/j.msea.2003.09.008.

Yermakov A.Ye., Mushnikov N.V., Uimin M.A., GavikoV.S., Tankeev A.P., Skripov A.V., Soloninin A.V., Buzlukov A.I. Hydrogen reaction kinetics of Mg-based allys synthesized by mechanical milling. J. Alloy Compd. 2006. Vol. 425. P. 367-372. doi:10.1016/i.jallcom.2006.01.039.

Baum L., Meyer M., Mendoza-Zelis L. Hydrogen storage properties of the Mg/Fe system. Physica B. 2007. Vol. 389. P, 189-192. Doi:10/1016.j.physb.2006.07.054.

Won Haa, Ho-Shin Leeb, Jeong-IlYouna, Tae-Whan Hongc,Young-Jig Kim. Hydrogenation and degradation of Mg–10 wt% Ni alloy aftercyclic hydriding–dehydriding. Int. J. of Hydrogen Energy. 2007. Vol. 32. P. 1885 – 1889. doi:10.1016/j.ijhydene.2006.08.029.

Hye Ryoung PARK, Sung Nam Kwon, Myoung Youp Song. Effects of Milling Time on the Hydrogen Storage Properties of Mg-based Transition Metals-added Alloys. MATERIALS SCIENCE (MEDŽIAGOTYRA). 2018. Vol. 24, No. 2. doi.org/10.5755/j01.ms.24.2.18395.

Ze Sun, Xiong Lu,Farai Michael Nyahuma, Nianhua Yan, Jiankun Xiao, Shichuan Su and Liuting Zhang. Enhancing Hydrogen Storage Properties of MgH2 by Transition Metals and Carbon Materials: A Brief Review. Frontiers in Chemistry . 2020. - V. 8. P. 552 – 566.

Mohamed Sherif El-Eskandarany. Recent developments in the fabrication,characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research. RSC Adv. 2019. 9, 9907–9930;DOI: 10.1039/c9ra00287a.

ZhuM., GaoY., CheX.Z., YangY.Q., Chung C.Y. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5−x(CoAlMn)x J. Alloys Compd. 2002. Vol. 330-332. P. 708-713.http://refhub.elsevier.com/S0925-8388(15)31346-3/sref83.

DuA.J., Sean C. Smith,X.D.Yao, Lu G.Q. The Role of Ti as Catalyst for the Dissociation ofHydrogen on a Mg(0001) Surface. J. Phys. Chem. B.2005. V. 109. P. 18037-1804; doi:10.1021/jp052804c

YuH., Bennici S.and AurouxA. Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticlecs.J. Hydrogen. Energy. 2014.Vol. 39. P. 11633-11641.

M. Shimada, H. E. Tamaki and H. Inoue. Kinetic analysis for hydrogen absorption and desorption of MgH2 – based composites.Materials and Chemical Engineering. 2014.Vol. 2, Nos. 3. P. 64 – 71.

N. Patelli, A. Migliori, V. Morandi, L.Pasquini. Interfacesinbiphasicnanoparticlesgive a boostto Magnesium-based hydrogenstorage. httpsdoiorg101016jnanoen2020104654.

H. Wang, H.J. Lin, W.T. Cai , L.Z. Ouyang, Zhu M.Tuning kinetics and thermodynamics of hydrogen storage in lightmetal element based systems. A review of recent progress. J. Alloys Comp. 2016. Vol. 658. P. 280 - 300; http://dx.doi.org/10.1016/j.jallcom.2015.10.090.

Qun Luo, Jianding Li, Bo Li, Bin Liu, Huaiyu Shao, Qian Li. Kinetics in Mg-based hydrogen materials storage: Enhancement and mechanism. J.of Magnesium and Alloys. 2019. Vol. 7. P. 58-71. doi.org/10.10 16/j.jma.2018.12.001.

Li Chen, Changyi Hua, Feng Liub. Microstructure and hydrogen storage kinetics ofMg89RE11 (RE - Pr, Nd, Sm) binary alloys. RSC Adv. 2019. Vol. 9. P. 4445–4452;doi: 10.1039/c8ra08983c.

Pozzo M., Alfè D. Hydrogen dissociation and diffusion on M(=Ti,Zr,V,Fe,Ru,Co,Rh,Ni,Pd,Cu,Ag)-doped Mg(0001). Surfaces. J. Chem. Phys. 2008. Vol.128. P. 094703 - http://arxiv.org/abs/0811.2342v1

BérubéV., RadtkeG., DresselhausM., ChenG. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review.Int. J. Energy Res. 2007. Vol. 31.P. 637–663; doi:10.1002/er.1284.

Asano K., Westerwaal R.J., Anastasopol A., Mooij L.P.A., Boelsma C., Ngene P., Schreuders H., EijtS.W.H., Dam B. Destabilization of Mg Hydride by Self‐Organized Nanoclusters in the Immiscible Mg‐Ti System. J. Phys. Chem. C. 2015. Vol.119. P. 12157–12164; doi:10.1021/acs.jpcc.5b02275.

Ying Wang, Qiuyu Zhang, YijingWang, Lifang Jiao, HuatangYuan. Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2. J. of Alloys and Compd.2015. Vol. 645.P. S509-S512.

DaryaniM., SimchiA., Sadati M., MdaahHosseiniH., TargholizadehH., KhakbizM.Effects of Ti-based catalysts on hydrogendesorption kinetics of nanostructured magnesiumhydride.Int. J.of Hydrogen Energy. 2014. Vol.39. P. 21007-210014; doi.org/10.1016/j.ijhydene.2014.10.078.

Rohit R. Shahi, Anand P. Tiwari, M.A. Shaz, O.N. Srivastava. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. Int. J. of Hydrogen energy. 2013.Vol.38. P. 2778 – 2784;doi.org/10.1016/j.ijhydene.2012.11.073.

ZhangQ.A., ZhangL.X., WangQ.Q.Crystallization behavior and hydrogen storage kinetics of amorphousMg11Y2Ni2 alloy. J. Alloys Comp.2013. Vol. 551. P. 376–381; doi.org/10.1016/j.jallcom.2012.11.046

Andreas Schneemann, James L. White, ShinYoung Kang, Sohee Jeong, Liwen F. Wan,Eun Seon Cho, Tae Wook Heo, David Prendergast, Jeffrey J. Urban, Brandon C. Wood,Mark D. Allendorf, Vitalie Stavila. Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev. 2018. Vol. 118, Nos. 22. P. 10775–10839; https://doi.org/10.1021/acs.chemrev.8b00313.

Rizo-Acosta Pavel, Fermı´n Cuevas, Latroche Michel. Optimization of TiH2 content for fast and efficient hydrogen cycling of MgH2-TiH2 nanocomposites. Int. J. of Hydrogen Energy.2018. doi.org/10.1016/j.ijhydene.2018.04.169

Hui Yonga, Xin Weia, Yanhao Wanga, Shihai Guoa, Zeming Yuana, Yan Qia, Dongliang Zhaoa, Yanghuan Zhanga. Phase evolution, thermodynamics and kinetics property of transition metal (TM -Zr, Ti, V) catalyzed Mg–Ce–Y–Ni hydrogen storage alloys. J. of Physics and Chemistry of Solids. 2020. Vol. 144. P. 109516 - 109525;doi.org/10.1016/j.jpcs.2020.109516.

Akbarzadeh Fatemeh Zahra,Rajabi Mohammad. Mechanical alloying fabrication of nickel/cerium/MgH2 nanocomposite for hydrogen storage: Molecular dynamics study and experimental verification. J. Alloys and Comps. 2022. Vol. 899. P. 163280-163289; doi.org/10.1016/j.jallcom.2021.163280

Sadhasivama T., Kimb Hee-Tak, Jungc Seunghun, Rohd Sung-Hee, Parka Jeong-Hun, Ho-Young Junga. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications:A review Renewable and Sustainable Energy Reviews. 2017. v. 72. P. 523–534.doi.org/10.1016/j.rser.2017.01107.

Berezovets V.V., Denys R.V., ZavaliyI.Yu., KosarchynYu.V.. Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2. Int. J. of Hydrogen Energy2022. Vol.47. Nos. 11. P. 7289-7298;doi.org/10.1016/j.ijhydene.2021.03.019.

Z. Min, Y. Lu, L. Ouyang and H. Wangm. Thermodynamic tuning of Mg-based hydrogen storage alloys. Materials, 2013. -Vol. 6. -p. 4654-4674.

ErshovaO.G., DobrovolskyV.D., SoloninYu.M.The role of Ni additive, size factor and surface chemicalstateindecreasing temperature and improving decomposition kinetics of the nanosized MgH2hydride phase of mechanical alloys Mg +10wt.% Ni and MgH2 +10wt.% Ni. Int. Independent Scientific Journal.2022. Vol. 1. Nos. 38. P. 22-32. https://doi.org/10.5281/zenodo.6559957.

Еrshova О.G., DobrovolskyV.D., Khyzhun О.Yu., SoloninYu.М. XPS&TDS study of mechanism influence of surface & the addition Ti on thermal stability, kinetic of hydrogen desorption from MgH2 received different methods. Physics and chemistry of solid state. 2011.Vol. 12. Nos.4.P. 1066-1073.

Dobrovolsky V.D., Khyzhun O.Y., Sinelnichenko A.K., Ershova O.G., Solonin Y.M. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH2 films obtained by direct hydrogenation from gaseous phase of metallic. Journal of Electron Spectroscopy and Related Phenomena. 2017.- 215. - 28-35. http://dx.doi.org/10.1016/j.elspec.2017.01.001

Fermin Cuevas, Dmytro Korablov and Michel Latroche. Synthesis, structural and hydrogenation properties of Mg-rich MgH2–TiH2 nanocomposites prepared by reactive ball milling under hydrogen gasw. J. Phys. Chem. Chem. Phys., 2012, 14, 1200–1211. DOI: 10.1039/c1cp23030a.

Nicola Patelli, Marco Calizzi, Andrea Migliori, Vittorio Morandi, and Luca Pasquini. Hydrogen Desorption Below 150 °C in MgH2–TiH2Composite Nanoparticles: Equilibrium and Kinetic Properties. J. Phys. Chem. C 2017, 121, 21,11166–11177.doi.org/ 10.1021/acs.Jpcc.7b03169

LotoskyyM., DenysR., YartysV., EriksenJon, SergeJ. G., NyamsiN., CordelliaSita and CummingsF. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogenstorage performance. J. Mater. Chem. A. 2018, p. 1-16. DOI:10.1039/C8TA02969E.

Pavel Rizo-Acosta, Fermin Cuevas and Michel Latroche. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A, 2019. 7. P. 23064 – 75. doi: 10.1039/C9TA05440E.

ShaoH., FelderhoffM., Sch¨uth F. and Cweidenthaler. Nanostructured Ti-catalyzed MgH2 forhydrogen storage. Nanotechnology. 2011. 22. p. 235401. doi:10.1088/0957-4484/22/23/235401.

Hakan Gasan, Osman N. Celik, Nedret Aydinbeyli, Yasar M. Yaman. Effect of V, Nb, Ti and graphiteadditions on the hydrogen desorption temperature of magnesium hydride. Int. J. Hydrog.Energy. 2012. – 37. P.1912-1918.

88. Chengshang Zhou, Zhigang Zak Fang, Pei Sun. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride. Journal of Power Sources. 2015. – 278. p. 38 – 42.http://dx.doi.org/10.1016/j.jpowsour.2014.12.039.

89. Dobrovolsky V.D., Radchenko O.G., Solonin Yu.M., Muratov V.B., I.A. Morozov. The influence of mechanical grinding on the thermal stability of the TiH2 hydride. J. Metallofiz. Noveishie Tekhnol. 2006, v. 28, N.3. P. 303 – 311.

Dobrovolsky V.D., Ershova O.G., Solonin Yu.M., Khyzhun O.Yu. Hydrogen-sorption and thermodynamic characteristics of mechanically grinded TiH1.9 as studied using thermal desorption spectroscopy. J. Alloys & Comp.2011. v.509, p. 128-133. doi:10.1016/j.jallcom.2010.09.003.

Downloads

Published

2023-04-01

How to Cite

Ershova, O., Dobrovolsky, V., & Solonin, Y. (2023). Effect of Ti additive and preparation procedure on the temperature and decomposition kinetics of the MgH2 phase in the synthesized mechanicals alloys. International Science Journal of Engineering & Agriculture, 2(2), 125–141. https://doi.org/10.46299/j.isjea.20230202.12