Mathematical modeling of critical phenomena in biomedical systems

Authors

DOI:

https://doi.org/10.46299/j.isjea.20230204.01

Keywords:

mathematical modeling, phase coexistence, differential-topological approach, spinodal decay, critical phenomena

Abstract

According to the differential-topological approach, the spaces in which the conditions of stable and unstable phase are fulfilled are determined on the phase diagram of the existence of the CRISPR-systems, and the fulfillment of the conditions of the existence of the second-order critical space is investigated. The methods of mathematical modeling of critical phenomena in multicomponent systems, which have the prospect of use in modern biomedical and gene technologies, are applied. The proposed method involves modeling the states of the CRISPR-systems by systems of equations and inequalities containing potential functions of the system state that depend on several variables. The purpose of the modeling is to determine the stability spaces, bifurcations and spaces of simultaneous coexistence of several phases of the studied system. In the investigated area of the phase diagram of the CRISPR-systems, the existence of a stable and an unstable phase was determined. The position of the spaces of the phase diagram in which the conditions for the existence of a stable and unstable phase, i.e. bifurcation space, are fulfilled are found. It was found that there are no spaces of the phase diagram in which the condition of simultaneous coexistence of two phases is fulfilled. From this, it is concluded that in the studied space of the phase diagram, the system does not tend to disintegrate into two coexisting phases. The simulation results can be used to analyze the stability of the CRISPR-systems under different conditions of synthesis and operation.

References

Uddin, F. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future / F Uddin, C. M. Rudin, S. Triparna // Front. Oncol., 07 August 2020 Sec. Cancer Genetics Volume 10 - 2020 – https://doi.org/10.3389/fonc.2020.01387

Ran, F. Genome engineering using the CRISPR-Cas9 system / F. A. Ran, P. D. Hsu, J. Wright / Nature Protocols – 2013. – Vol. 8. – P. 2281–2308

Matthew G. Mathematical modeling of selfcontained CRISPR gene drive reversal systems/Matthew G. Heffel, G. C. Finnigan // Scientific Reports. – 2019 9:20050. https://doi.org/10.1038/s41598-019-54805-8 10

Yuanyuan X. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy / Yuanyuan Xu, Zhanjun L // Computational and Structural Biotechnology Journal – 2020. – Vol.18. – P. 2401–2415

Klein, М. Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules / Misha Klein, Behrouz Eslami-Mossallam, Dylan Gonzalez Arroyo, Martin Depken // Cell Reports – 2018 – 22, February 6, P. 1413–1423

Shapovalov H. Mathematical modeling of critical phenomena in biomedical systems / H. Shapovalov, A. Kazakov, I. Berber // Proceedings of the IІ International Scientific and Technical Conference “MODERN TECHNOLOGIES OF BIOMEDICAL ENGINEERING” ¬– 2023. – P. 218 – 222

Соловйов С. Математичне моделювання як сучасний інструмент прогнозування ефективності протиротавірусних вакцин / С. О. Соловйов // медична інформатика та інженерія – 2011. – № 2. – С. 59 – 63

Cahn, J. On spinodal decomposition [Текст] / J.Cahn // Acta Met. — 1961. — Vol. 9. — P. 795 — 801.

Okada, K. Classical calculations on the phase transition I. Phase diagram in four-dimensional space for the system with one order parameter / K. Okada, I. Suzuki // J. Phys. Soc. Jap. — 1982. — Vol. 51, № 10. — P. 3250 — 3257.

Laugier, A. Thermodynamics and phase diagram calculations in II-VI and IV-VI ternary systems using an associated solution model [Текст] / A. Laugier // Revue De Physique Applique. — 1973. — Vol. 8, № 9 — P. 259–26.

Kazakov, A. Computer simulation for stability of quaternary solid solutions [Текст] / A. Kazakov, I. Kishmar // J. Crystal Growth. — 1991. — Vol. 110. — P. 803 — 814.

Kazakov, A. Stability analysis of quaternary alloys including the lattice mismatch strain energy [Текст] / А. Kazakov, I. Kishmar // J. Crystal Growth. — 1992. — Vol. 125. — P. 509 — 518.

Shapovalov G. Calculation of the phases coexistence spaces in the system Hg-Mn-Te-Se [Текст] / A. Kazakov, D. Burtnyi, G. Shapovalov // Proceedings of Odessa Polytechnic University. ― 2018. ― Т. 54, № 1. ― С. 69 ― 73.

Kazakov, A.I. Computer simulation for formation of critical spaces in II–VI solid solutions / A.I.Kazakov, G.V.Shapovalov, P.P.Moskvin // Journal of Crystal Growth. ― 2019. ― V. 506 ― P. 201 ― 205.

Moskvin, P. P. Spinodal decomposition and composition modulation effect at the lowtemperature synthesis of semiconductor solid solutions / Pavel P. Moskvin, Sergii I. Skurativskyi, Oleksandr P. Kravchenko, Galyna V. Skyba, Hennadii V. Shapovalov // Journal of Crystal Growth. ― 2019. ― V. 510 ― P. 40 ― 46.

Traat, I. Matrix calculus for multivariate distributions / I.Traat // State University of Tartu — 1986. — V.733. — P. 64 — 85.

Downloads

Published

2023-08-01

How to Cite

Shapovalov, H., Kazakov, A., & Berber, I. (2023). Mathematical modeling of critical phenomena in biomedical systems. International Science Journal of Engineering & Agriculture, 2(4), 1–8. https://doi.org/10.46299/j.isjea.20230204.01