Qualitative indicators of rape varieties (Brassica napus oleifera Metzg L.) in accordance with modern requirements
DOI:
https://doi.org/10.46299/j.isjea.20240305.06Keywords:
Fatty acids, Variety model, Direction of use, Oil, Rapeseed oil, Fractional compositionAbstract
rapeseed is an important source of obtaining cheap vegetable oil, which is used in almost all branches of the national economy: food, metallurgical, medical, chemical, automotive industry. High productivity of the culture can be ensured only by new modern varieties and hybrids with improved indicators of productivity and biochemical composition of seeds, adapted to the ecological conditions of the growing area. Before starting breeding work, you need to make a variety model with the specified quality indicators, hidden in the subconscious of an experienced breeder. Changing the fatty acid composition of rapeseed oil is a primary task of rapeseed breeding. The quality and direction of its use depends on the percentage content of fatty acids in rapeseed oil. Seed quality is characterized by a set of indicators that meet the requirements of regulatory and technical documentation. A single regulatory document that would determine the quality of rapeseed for the production needs of the modern market has not been found. From the analyzed existing regulatory documentation and scientific literature, regarding the parameters of the fractional composition of fatty acids and the content of glucosinolates in different types of rapeseed of technical and food use, the fractional composition of oil and the content of glucosinolates for different types of rapeseed models were determined. Seeds of varieties of the technical direction of use "++" and "+0" must contain glucosinolates and erucic acid at a level > 4.0; 45.0–55.0 and 2.0–3.0; > 47.0 %, respectively. The seeds of food grade "0+" varieties must contain glucosinolates no more than 2.0 %, erucic acid 0–2.0 %, saturated acids 8 % (palmitic – 7.0 and stearic – 1 %), simple unsaturated oleic – 56.0–66.0 % and polyunsaturated 27 % (linoleic – 25.0 and linolenic – 2.0 %). The content of glucosinolates should not exceed 2.0 % in the seeds of food grade "00" varieties, erucic acid is not allowed, palmitic and stearic acids should be 10.0 and 1.0–2.0 %, respectively. The content of oleic acid is at the level of 65.0–69.0 %, linoleic acid is more than 25.0 %, and linolenic acid is less than 2 %. In the seeds of varieties of the food direction of use "000", the mass of the shell should not exceed 13.0 %, the fat content in the seeds should be more than 50.0 %, glucosinolates should not exceed 2.0 %, erucic acid is not allowed, palmitic and stearic acids should to be, respectively, 10.0 and 1.0 %. The content of oleic acid is more than 70.0 %, linoleic acid is more than 25.0 %, and linolenic acid is less than 2 %. This study was conducted to determine the fractional oil composition and glucosinolate content for different types of rapeseed models. The obtained results with the specified parameters are recommended to be used by breeders and producers for the creation and cultivation of new varieties of rapeseed of different types and direction of use.References
Кирильчук, А.М. (2009). Вивчення колекційних зразків ріпаку ярого та виділення основних джерел господарських ознак. Науково-технічний бюлетень Інституту олійних культур УААН, №14, С. 21–7. URL: http://bulletin.imk.zp.ua/pdf/2009/14/Kirilchuk_14.pdf
Кирильчук, А.М., Солодюк, Н.В. (2013). Конкурентоздатність та сортовий потенціал ріпаку (Brassica napus oleifera annua Metzger.) в Україні. Корми і кормовиробництво, Вип. 76, С. 110–115. URL: https://fri-journal.com/index.php/journal/article/view/584
Wang, N., Duan, C., Geng, X., Li, S., Ding, K., Guan, Y. (2019). One step rapid dispersive liquid-liquid micro-extraction with in-situ derivatization for determination of aflatoxins in vegetable oils based on high performance liquid chromatography fluorescence detection. Food chemistry, 287, 333–337. doi: http://doi.org/10.1016/j.foodchem.2019.02.099
Przybylski, R., Mag, T.; Frank. D. Gunstone (Ed). (2002). Canola/rapeseed oil. Vegetable oils in food technology: Composition, Properties and Uses. Blackwell Publishing CRCPress, 98–127. URL: https
Nawaz, H., Shad, M.A., Muzaffar, S. (2018). Phytochemical Composition and Antioxidant Potential of Brassica. Brassica Germplasm – Characterization, Breeding and Utilization, 1, 7–26. doi: http://doi.org/10.5772/intechopen.76120
Food and agriculture organisation of the United Nations. FAOSTAT statistical database (2020). Available at: URL: https://www.fao.org/faostat/en/#data/QCL
Coves, S., Soengas, P., Velasco, P., Fernández, J. C., Cartea, M. E. (2023). New vegetable varieties of Brassica rapa and Brassica napus with modified glucosinolate content obtained by mass selection approach. Sec. Nutrition and Food Science Technology, 10. doi: https://doi.org/10.3389/fnut.2023.1198121
Hashempour-Baltork, F., Torbati, M., Azadmard-Damerchi, S., Savage, G.P. (2016). Vegetable oil blending: A review of physicochemical, nutritional and health effects. Trends in Food Science & Technology, 5, 52–58. doi: http://doi.org/10.1016/j.tifs.2016.09.007
Ayadi, J., Debouba, M., Rahmani, R., Bouajila, J. (2022). Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules, 27(18), 6008. doi: http://doi.org/10.3390/molecules27186008
Guan, M., Chen, H., Xiong, X., Lu, X., Li, X., Huang, F., Guan, C. (2016). A Study on Triacylglycerol Composition and the Structure of High-Oleic Rapeseed Oil. Engineering, 2(2), 258–262. doi: http://doi.org/10.1016/J.ENG.2016.02.004
Shankar, S., Segaran, G., Sundar, R.D.V., Settu, S., Sathiavelu, M. (2019). Brassicaceae-A Classical Review on Its Pharmacological Activities. International Journal of Pharmaceutical Sciences Review and Research, 55, 107–113. URL: https://www.researchgate.net/profile/Ranjitha-Dhevi-Vs-2/publication/331684022_Brassicaceae-_A_Classical_Review_on_Its_Pharmacological_Activities/links/5c9b9f88299bf111694bb6f4/Brassicaceae-A-Classical-Review-on-Its-Pharmacological-Activities.pdf
Ramirez, D., Abellán-Victorio, A., Beretta, V., Camargo, A., Moreno, D.A. (2020). Functional Ingredients from Brassicaceae Species: Overview and Perspectives. International Journal of Molecular Sciences, 21, 1998. doi: http://doi.org/10.3390/ijms21061998
Peña, M., Guzmán, A., Martínez, R., Mesas, C., Prados, J., Porres, J.M., Melguizo, C. (2022). Preventive Effects of Brassicaceae Family for Colon Cancer Prevention: A Focus on in Vitro Studies. Biomedicine & Pharmacotherapy, 151, 113145. doi: http://doi.org/10.1016/j.biopha.2022.113145
Mattosinhos, P.S., Sarandy, M.M., Novaes, R.D., Esposito, D., Gonçalves, R.V. (2022). Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of in Vitro and In Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxidants, 11, 1346. doi: http://doi.org/10.3390/antiox11071346
Li, J., Liu, J., Sun, X., Liu, Y. (2018). The Mathematical Prediction Model for the Oxidative Stability of Vegetable Oils by the Main Fatty Acids Composition and Thermogravimetric Analysis. LWT – Food Science and Technology, 96, 51–57. doi: http://doi.org/10.1016/j.lwt.2018.05.003
Warner, K. and Mounts, T.L. (1993) Frying stability of soybean and canola oils with modified fatty acid composition. Journal of the American Oil Chemists` Society, 70, 983–989. doi: http://doi.org/10.1007/bf02543024
Knowlton, S. (2022). High-oleic soybean oil. High Oleic Oils. Development, Properties, and Uses. 53–87. doi: http://doi.org/10.1016/B978-0-12-822912-5.00007-1
Lozano-Baena, M.-D., Tasset, I., Obregón-Cano, S., de Haro-Bailon, A., Muñoz-Serrano, A., Alonso-Moraga, Á. (2015). Antigenotoxicity and Tumor Growing Inhibition by Leafy Brassica Carinata and Sinigrin. Molecules, 20, 15748–15765. doi: http://doi.org/10.3390/milecules200915748
Aydin, S. (2020). Total Phenolic Content, Antioxidant, Antibacterial and Antifungal Activities, FT-IR Analyses of Brassica oleracea L. Var. Acephala and Ornithogalum umbellatum L. Genetika, 52, 229–244. doi: http://doi.org/10.2298/GENSR2001229A
Глікозиди як лікарські засоби. Фармацевт практик. 2015. URL: https://fp.com.ua/articles/glikozidi-yak-likarski-zasobi/
Connolly, E.L., Sim, M., Travica, N., Marx, W., Beasy, G., Lynch, G.S., Bondonno, C.P., Lewis, J.R., Hodgson, J.M., Blekkenhorst, L.C. (2021). Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Frontiers Pharmacology. Sec. Translational Pharmacology, 12, 767975. doi: http://doi.org/10.3389/fphar.2021.767975
Liu, S., Huang, H., Yi, X., Zhang, Y., Yang, Q., Zhang, C., Fan, C., Zhou, Y. (2020). Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Plant Biotechnol, 18(6), 1472-1484. doi: http://doi.org/10.1111/pbi.13314
Beyzi, E., Gunes, A., Beyzi, S.B, Konca, Y. (2019). Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. Oleifera L.) oil with seed sizes. Industrial Crops and Products, 129, 10-14. doi: http://doi.org/10.1016/j.indcrop.2018.11.064
Abul-Fadl, M.M., El-Badry, N., Ammar, M.S. (2011). Nutritional and Chemical Evaluation for Two Different Varieties of Mustard Seeds. World Applied Sciences, 15(9), 1225–1233. URL: https://www.researchgate.net/profile/Mostafa-Aboulfadl/publication/279597329_Nutritional_and_Chemical_Evaluation_for_Two_Different_Varieties_of_Mustard_Seeds/links/5ae2ea3f458515c60f683258/Nutritional-and-Chemical-Evaluation-for-Two-Different-Varieties-of-Mustard-Seeds.pdf
Sanyal, A., Pinochet, X., Merrien, A., Laustriat, M., Decocq, G., Fine, F. (2015). Erucic acid rapeseed: 1. Prospects of improvements. OCL - Oilseeds and fats, Crops and Lipids, 22(3), 150011. doi: http://doi.org/10.1051/ocl/2015011
Bao, X., Pollard, M., Ohlrogge, J. (1998).The Biosynthesis of Erucic Acid in Developing Embryos of Brassica rapa. Plant Physiology, 118(1), 183–190. doi: http://doi.org/10.1104/pp.118.1.183
Ackman, R.G., Shahidi, F. (Ed.) (1990) Canola fatty acids – an ideal mixture for health, nutrition, and food use. Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology. Avi Book, Van Nostrand Reinhold. New York, 81–98. doi: https://doi.org/10.1007/978-1-4615-3912-4_6
Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA relevance), 2015. URL: http
Насіння ріпаку. Промислова сировина: ГОСТ 10583-76. 1977. 9 с.
Насіння ріпаку та суріпиці. Сортові та посівні якості. Технічні умови: ГОСТ 9824-87. 1998. 7 с.
Codex Standard for Edible Fats and Oils not Covered by Individual Standards. CODEX STAN 19–1981, Rev. 2, 1999. URL: https://www.fao.org/3/y2774e/y2774e03.htm#TopOfPage
EC: Commission Decision of 24 October 2006 authorising the placing on the market of rapeseed oil high in unsaponifiable matter as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (notified under document number C(2006) 4975), 2006. URL: http://data.europa.eu/eli/dec/2006/722/oj
Олія ріпакова. Технічні умови: ДСТУ 8175:2015. Чинний від 2017-01-01. 22 с. URL: https://sunflower.ua/wp-content/uploads/2023/11/Текст-ДСТУ-8175_2015-Олія-ріпакова.-Технічні-умови-compressed.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anzhela Kyrylchuk, Iryna Bezprozvana, Alla Ivanitskaya, Nataliia Shcherbynina, Larysa Prysiazhniuk
This work is licensed under a Creative Commons Attribution 4.0 International License.