DETERMINATION OF THE STRESS-STRAIN STATE OF THE STRUCTURAL ELEMENTS OF THE ELBOW ORTHOSIS PROTOTYPE

Authors

  • Iaroslav Lavrenko Chair of Machine Dynamics and Strength of Materials, National Technical University of Ukraine «Igor Sikorsky Kyiv Politechnic Institute» https://orcid.org/0000-0002-4384-4866
  • Bohdan Lebedynskyi Chair of Machine Dynamics and Strength of Materials, National Technical University of Ukraine «Igor Sikorsky Kyiv Politechnic Institute»

Keywords:

elbow orthosis, stress-strain state, aluminum plates, modeling prototype, FEMAP with NASTRAN

Abstract

Rehabilitation of patients should not be limited only to the time of intensive treatment in the hospital, but also to therapy in the following stages, especially during daily activities, if the patient's condition requires it. Such devices that help the patient during postoperative or post-traumatic rehabilitation after joint damage are orthoses. This paper provides an overview of various types of orthoses, selects material for structural elements of the orthosis, and determines the stress-strain state of the sample under study. Also, based on the necessary operating conditions, the engine and bevel gear are selected. The model of the orthosis prototype is presented and the stress-strain state of the structural elements of the elbow orthosis prototype is determined.

References

Islam, M.R.; Spiewak, C.; Rahman, M.H.; Fareh, R. A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap between Research Porotype and Commercial Type. Adv. Robot Autom. 2017, 6, 408–417.

Kim, S.; Nussbaum, M.A.; Esfahani, M.I.M.; Alemi, M.M.; Jia, B.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II–“Unexpected” effects on shoulder motion, balance, and spine loading. Appl. Ergon. 2018, 70, 323–330.

Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 171–182.

Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. In Proceedings of the IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; pp. 412–417.

Gustaw Rzyman, Jacek Szkopek, Grzegorz Redlarski, Aleksander Pałkowski. Upper Limb Bionic Orthoses: General Overview and Forecasting Changes. Applied Science. 2020 Vol.10, No 15. 5323; DOI:10.3390/app10155323.

Hsieh, H.C.; Chen, D.F.; Chien, L.; Lan, C.C. Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation. IEEE/ASME Trans. Mechatron. 2017, 22, 2034–2045.

Lessard, S.; Pansodtee, P.; Robbins, A.; Trombadore, J.M.; Kurniawan, S.; Teodorescu, M. A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1604–1617. [PubMed].

Vlachos, E.; Jochum, E.; Demers, L.P. HEAT: The harmony exoskeleton self-assessment test. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 577–582.

Bai, S.; Christensen, S.; Islam, M.R.U. An upper-body exoskeleton with a novel shoulder mechanism for assistive applications. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1041–1046.

Castro, M.N.; Rasmussen, J.; Andersen, M.S.; Bai, S. A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications. Mech. Mach. Theory 2019, 132, 264–278.

Crea, S.; Cempini, M.; Moisè, M.; Baldoni, A.; Trigili, E.; Marconi, D.; Cortese, M.; Giovacchini, F.; Posteraro, F.; Vitiello, N. A novel shoulder-elbow exoskeleton with series elastic actuators. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1248–1253.

Ebrahimi, A.; Gröninger, D.; Singer, R.; Schneider, U. Control parameter optimization of the actively powered upper body exoskeleton using subjective feedbacks. In Proceedings of the 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 432–437.

Mao, Y.; Agrawal, S.K. Transition from mechanical arm to human arm with CAREX: A cable driven Arm EXoskeleton (CAREX) for neural rehabilitation. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2457–2462.

Mao Y, Jin X et al. Human movement training with a cable driven arm exoskeleton (CAREX). IEE Transactions on Neural Systems and Rehabilitation Engineering. 2015; 23(1): 84. doi:101109/TNSRE.2014.2329018.

F. Xiao et al. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure. PMID: 28582886. DOI 10.3233/THC-171300.

Myomo. URL: https://myomo.com/what-is-a-myopro-orthosis/ (дата звернення: 29.04.2022).

Ripel Tomasa, Krejsa Jiri, Jan Hrbacek, Igor Cizmar. Active Elbow Orthosis. International Journal of Advanced Robotic Systems. 2014. Vol. 22, No 2. 143; DOI: 10.5772/58874.

Anastasiia Kyrylova. Development of a Wearable Mechatronic Elbow Brace for Postoperative Motion Rehabilitation. Electronic Thesis and Dissertation Repository. 2015 URL: https://ir.lib.uwo.ca/etd/3019.

ДСТУ ISO 1580:2007 Винты с цилиндрической скругленной головкой и прямым шлицем. Класс точности А. Технические условия ((ІSO 1580:1994, IDT)).

ГОСТ 6958-78 Шайбы увеличенные. Классы точности А и С. Технические условия.

Downloads

Published

2022-08-01

How to Cite

Lavrenko, I., & Lebedynskyi, B. (2022). DETERMINATION OF THE STRESS-STRAIN STATE OF THE STRUCTURAL ELEMENTS OF THE ELBOW ORTHOSIS PROTOTYPE. International Science Journal of Engineering & Agriculture, 1(3), 29–36. Retrieved from https://isg-journal.com/isjea/article/view/13