Solution of the contact task of the elbow orthosis prototype
DOI:
https://doi.org/10.46299/j.isjea.20220105.10Keywords:
elbow orthosis, bolt joint, stress-strain state, aluminum plates, modeling prototype, FEMAP with NASTRANAbstract
Over the past two decades, upper limb exoskeletons used for service delivery and rehabilitation have attracted attention from the biomedical and engineering sectors. Technology is becoming one of the key solutions for physically weak or disabled people. Mechanical devices were developed to improve the performance and strength of the user. Devices that help the patient during postoperative or post-traumatic rehabilitation after joint damage of various types are orthoses. There are different types of orthoses, such as mechanical, active with EMG functions, exoskeletons, and others. In this work, an overview of various types of orthoses is given, problems of fixing orthoses elements are considered. In the review of the literature related to these studies, the advantages and disadvantages of bolted connections are given. Two contact problems of the orthosis were also considered and the stress-strain state of the bolted joint of the structural elements of the elbow orthosis prototype under study was determined using the FEMAP with NASTRAN software package. Based on the necessary operating conditions, a prototype model of the orthosis was presented.
References
Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. (2012). The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. In Proceedings of the IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012, 412–417.
Gustaw Rzyman, Jacek Szkopek, Grzegorz Redlarski, Aleksander Pałkowski. (2020). Upper Limb Bionic Orthoses: General Overview and Forecasting Changes. Applied Science. 2020 10(15), 5323. DOI:10.3390/app10155323.
Hsieh, H.C.; Chen, D.F.; Chien, L.; Lan, C.C. (2017). Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation. IEEE/ASME Trans. Mechatron. 22, 2034–2045.
Lessard, S.; Pansodtee, P.; Robbins, A.; Trombadore, J.M.; Kurniawan, S.; Teodorescu, M. (2018). A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1604–1617. [PubMed].
Vlachos, E.; Jochum, E.; Demers, L.P. (2018). HEAT: The harmony exoskeleton self-assessment test. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018, 577–582.
Bai, S.; Christensen, S.; Islam, M.R.U. (2017). An upper-body exoskeleton with a novel shoulder mechanism for assistive applications. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017, 1041–1046.
Castro, M.N.; Rasmussen, J.; Andersen, M.S.; Bai, S. A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications. Mech. Mach. Theory 2019, 132, 264–278.
Crea, S.; Cempini, M.; Moisè, M.; Baldoni, A.; Trigili, E.; Marconi, D.; Cortese, M.; Giovacchini, F.; Posteraro, F.; Vitiello, N. (2016). A novel shoulder-elbow exoskeleton with series elastic actuators. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016, 1248–1253.
Ebrahimi, A.; Gröninger, D.; Singer, R.; Schneider, U. (2017). Control parameter optimization of the actively powered upper body exoskeleton using subjective feedbacks. In Proceedings of the 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017, 432–437.
Mao, Y.; Agrawal, S.K. (2012). Transition from mechanical arm to human arm with CAREX: A cable driven Arm EXoskeleton (CAREX) for neural rehabilitation. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012, 2457–2462.
Mao Y, Jin X et al. (2015). Human movement training with a cable driven arm exoskeleton (CAREX). IEE Transactions on Neural Systems and Rehabilitation Engineering. 23(1), 84. doi:101109/TNSRE.2014.2329018.
F. Xiao et al. (2016). Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure. PMID: 28582886. DOI 10.3233/THC-171300.
Soumya K. Manna, Venketesh N. Dubey. (2017). A Mechanism for Elbow Exoskeleton for Customised Training; Member, IEEE.
Lavrenko Ia., Lebedynskyi B. (2022). Determination of the stress-srain state of the structural elements of the elbow orthosis prototype. International Science Journal of Engineering & Agriculture. 1(3), 29-36. doi: 10.46299/j.isjea.20220103.3.
Гребеников А.Г., Клименко В.Н., Ефремов А.Ю., Трубаев С.В. (2007). Проектирование срезных болтовых соединений элементов самолетных конструкций из титанового сплава ВТ6 с учетом усталостной долговечности / Открытые информационные и компьютерные интегрированные технологии. – Х.: НАКУ "ХАИ", 34, 60-70.
Работнов Ю.Н. (1988). Механика деформируемого твердого тела: Учеб. пособие для вузов. М.Наука, 712.
Биргер И.А., Шорр Б.Ф., Иосилевич Г.Б. (1979). Расчет на прочность деталей машин: Справочник. М. Машиностроение, 702.
Рудаков К.М., Добронравов О.А. (2013). Про вплив величини зазору між болтом та отвором на напружений стан болта однозрізного болтового з’єднання в зоні "зрізу". Вісник НТУУ "КПІ". Сер. Машинобудування, 3(69), 62-71.
Гребеников А.Г., Клименко В.Н. (2006). Исследование влияния радиального натяга, осевой затяжки болтов и поверхностного упрочнения элементов срезного соединения из титанового сплава ВТ6 на их усталостную долговечность. Открытые информационные и компьютерные интегрированные технологии. Х. НАКУ "ХАИ", 31, 41-54.
Воробьев А.З., Олькин Б.И., Стебнев В.Н., Родченко Т.С. Сопротивление усталости элементов конструкций. М. Машиностроение, 199.
Amit P. Wankhade and Kiran K. Jadhao (2014), “Design and Analysis of Bolted Joint in Composite Laminated”, Journal of Modern Engineering Research (IJMER), 4 (3), 20-24.
Counts, W.A. and Johnson, W.S. (2002), Experimental study on clamping effects on the tensile strength of composite plates with a bolt-filled hole / International journal of Fatigue. 24.
Karlsson, K. (2012) An experimental study of rotation in a composite single bolted joint. Teknisk-naturvetenskaplig fakultet UTH – enheten.
Manalo, A.C., Mutsuyoshi, H., Asamoto, S. and Matsui, T. (2008) Mechanical behavior of hybrid FRP composites with bolted joints. In: 20th Australasian Conference on the Mechanics of Structures and Materials (ACMSM 20): Futures in Mechanics of Structures and Materials , 2-5 Dec 2008, Toowoomba, Australia.
Pakdil, M., Sen, F. and Sayman O. (2009). Damage development in bolted composites with clearance subjected to preload. International Journal of Engineering and Applied Sciences (IJEAS), 1(4), 52-66.
Sen, F., Sayman, O., Ozcan, R. and Siyankoc, R. (2010), Failure response of single bolted composite joints under various preload. Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, 39-48.
Younis, N. (2012), Experimental Strain Investigation of Bolt Torque Effect in Mechanically Fastened Joints. Engineering, 4, 359-367. doi:10.4236/eng.2012.47047 Published Online July 2012 (http://www.SciRP.org/journal/eng.
Решетникова Р.Ю. (2013). Влияние осевого натяга на локальное напряженное состояние в односрезных болтовых соединениях. Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». 1 (73), 87-99.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iaroslav Lavrenko, Bohdan Lebedynskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.