Engineering patterns of changes in the parameters of functioning of intercity passenger transportation system
DOI:
https://doi.org/10.46299/j.isjea.20220105.14Keywords:
Transport System, Intercity Passenger Transport Route, Basic Parameters of Transportation, Efficiency, ModelAbstract
It is proved that when changing the parameters of the distribution of passenger traffic between automobile and railway route networks, the quantitative mean values of the average length of the route and medium network range of the ride change by less than 0.01%, and the transfer ratio remains unchanged. It is determined that changing the speed of the ride is such a factor that does not affect the quantitative values of the number of movements in the network, the transfer ratio, the average distance of the trip. At the same time, the existence of a polynomial dependence of the average coefficient of passenger capacity use and the number of buses on the speed of route/network rides has been proved. The functions of redistribution of volumes of transportation in relation to any route of different types of transport, with a constant total number of movements, causes an increase in the number of transported passengers, the transport operation of the route network, the average coefficient of passenger capacity, the number of vehicles. This obtained the sequence and content of studies of rational parameters of the intercity passenger system, which can be used in similar formalization of the action of the mentioned system in the consideration of international route systems. At the same time, the transport systems of a number of countries may modularly constitute the general system of a territory that is combined according to any principle.
References
Majid, M. A. A., Pardi, F., Amer, A., Kamdari, N. A. M., & Selamat, S. M. (2019). Air passengers vertex curve theorem - evidence from asean countries. Asian Economic and Financial Review, 9(3), 329-338. doi:10.18488/journal.aefr.2019.93.329.338
Zhang, Y., & Findlay, C. (2014). Air transport policy and its impacts on passenger traffic and tourist flows. Journal of Air Transport Management, 34, 42-48. doi:10.1016/j.jairtraman.2013.07.010
Mygal, V., Mygal, G., Illiashenko, O. Intelligent Decision Support – Cognitive Aspects. Digital Transformation, Cyber Security and Resilience of Modern Societies. Cham: Springer, 2021, Vol 84, рp. 395–411. (Studies in Big Data ; DOI: https://doi.org/10.1007/978-3-030-65722-2_25
V.P. Mygal , G.V. Mygal. Topological 3D Model of the Functioning of a Dynamic System – Cognitive Estimation of Complexity. J. Nano- Electron. Phys. 13 No 4, 04023 (2021). P. 04023-1 - 04023-6. https://doi.org/10.21272/jnep.13(4).04023
Galyna Mygal, Valeriy Mygal, Olga Protasenko and Igor Klymenko. Cognitive Aspects of Ensuring the Safety, Dependability and Stability of a Dynamic System’s Functioning in Extreme Conditions. M. Nechyporuk et al. (Eds.): ICTM 2021, LNNS 367, pp. 1–12, 2022. https://doi.org/10.1007/978-3-030-94259-5_18
Mygal, V., Mygal, G., Mygal, S. Transdisciplinary convergent approach - human factor. Radioelectronic and computer systems, 2021, #4(100), pp. 7-21. doi: 10.32620/reks.2021.4.01
Illiashenko, O., Mygal, V., Mygal, G., Protasenko, O. (2021). A convergent approach to the viability of the dynamical systems: The cognitive value of complexity. International Journal of Safety and Security Engineering, Vol. 11, No. 6, pp. 713-719. https://doi.org/10.18280/ijsse.110612
V. P. Mygal, G. V. Mygal. Heuristic modeling of NBIT capabilities – cognitive aspects. J. Nano-Electron. Phys. 14 No 4, 04007 (2022). DOI: https://doi.org/10.21272/jnep.14(4).04007
V. P. Mygal, G. V. Mygal, S. P. Mygal. Artificial intelligence as the cognitive value of heuristic models. Radioelectronic and computer systems, No 2 (2022). DOI: https://doi.org/10.32620/reks.2022.2.10
Mygal, Valeriy, Galyna Mygal, and Stanislav Mygal. "Problems of Safety in the Evolving Industrial Environment and the Development of Information Technology: The Human Factor." Information & Security: An International Journal 53, no. 2 (2022): 240-252. https://doi.org/10.11610/isij.5316
Carmona-Benítez, R. B., & Nieto-Delfín, M. R. (2015). Bootstrap estimation intervals using bias corrected accelerated method to forecast air passenger demand doi:10.1007/978-3-319-24264-4_22
Iyer, K. C., & Jain, S. (2020). Breakeven passenger traffic for regional indian airports. Paper presented at the Transportation Research Procedia, , 48 1805-1814. doi:10.1016/j.trpro.2020.08.215
Qiu, R., Xu, J., & Zeng, Z. (2017). Carbon emission allowance allocation with a mixed mechanism in air passenger transport. Journal of Environmental Management, 200, 204-216. doi:10.1016/j.jenvman.2017.05.036
Xu, J., Qiu, R., & Lv, C. (2016). Carbon emission allowance allocation with cap and trade mechanism in air passenger transport. Journal of Cleaner Production, 131, 308-320. doi:10.1016/j.jclepro.2016.05.029
Jin, F., Li, Y., Sun, S., & Li, H. (2020). Forecasting air passenger demand with a new hybrid ensemble approach. Journal of Air Transport Management, 83 doi:10.1016/j.jairtraman.2019.101744
Cakir, V., & Oguz, S. (2018). Forecasting air passenger demand with system dynamics under terrorism threat. Paper presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management, , 2018(JUL) 2676-2677.
Gunter, U., & Zekan, B. (2021). Forecasting air passenger numbers with a GVAR model. Annals of Tourism Research, 89 doi:10.1016/j.annals.2021.103252
Wu, X., Xiang, Y., Mao, G., Du, M., Yang, X., & Zhou, X. (2021). Forecasting air passenger traffic flow based on the two-phase learning model. Journal of Supercomputing, 77(5), 4221-4243. doi:10.1007/s11227-020-03428-2
Tsui, W. H. K., Ozer Balli, H., Gilbey, A., & Gow, H. (2014). Forecasting of hong kong airport's passenger throughput. Tourism Management, 42, 62-76. doi:10.1016/j.tourman.2013.10.008
Kim, S., & Shin, D. H. (2016). Forecasting short-term air passenger demand using big data from search engine queries. Automation in Construction, 70, 98-108. doi:10.1016/j.autcon.2016.06.009
Nourzadeh, F., Ebrahimnejad, S., Khalili-Damghani, K., & Hafezalkotob, A. (2020). Forecasting the international air passengers of iran using an artificial neural network. International Journal of Industrial and Systems Engineering, 34(4), 562-581. doi:10.1504/IJISE.2020.106089
Janic, M. (2003). High-speed rail and air passenger transport: A comparison of the operational environmental performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 217(4), 259-269. doi:10.1243/095440903322712865
Sulistyowati, R., Suhartono, Kuswanto, H., Setiawan, & Astuti, E. T. (2018). Hybrid forecasting model to predict air passenger and cargo in indonesia. Paper presented at the 2018 International Conference on Information and Communications Technology, ICOIACT 2018, , 2018-January 442-447. doi:10.1109/ICOIACT.2018.8350816
Hsu, C. -., & Wen, Y. -. (1998). Improved grey prediction models for the trans-pacific air passenger market. Transportation Planning and Technology, 22(2), 87-107. doi:10.1080/03081069808717622
Chen, S. -., Kuo, S. -., Chang, K. -., & Wang, Y. -. (2012). Improving the forecasting accuracy of air passenger and air cargo demand: The application of back-propagation neural networks. Transportation Planning and Technology, 35(3), 373-392. doi:10.1080/03081060.2012.673272
Dolia K., Dolia O., Lyfenko S., Botsman A.. Management of Freight Transport Projects in Cities in Assessing Their Effectiveness. Software Engineering. Vol. 6, No. 2, 2018, pp. 63-68. doi: 10.11648/j.se.20180602.15
К. Доля. Geovirtual Urban Environments as Media for the Communication of Information Related to Managing Urban Land [Conference] // Матеріали науково–практичної конференції, присвяченої міжнародному дню геоінформаційних систем / К. Доля, О. Доля. – Харків : [б.н.], 2016. – С. 57–59.
Dolya C., Dolya O., Methods of Establishing and Implementing the Optimal Fares for Passenger Transport. American Journal of Traffic and Transportation Engineering. Vol. 1, No. 4, 2016, pp. 60-67. doi: 10.11648/j.ajtte.20160104.14
Доля К. B. State regulation and legal support for entrepreneurial activities of business entities, which provided services for the carriage of passengers onpublic bus routes in Ukraine / К. B. Доля, О. Є. Доля.
Доля К. В. 3Д моделювання гетерогенної просторової інформації в ГІС, як засіб управління земельними ресурсами [Збірка доповідей] //Матеріали Всеукр. наук.–практ. конф., присвяч. 70-річчю кафедри управління земельними ресурсами та кадастру / К. В. Доля, О. Є. Доля. –Харків : 2016. – С. 167.
Gyulyev N., Dolia K., Dolia O. Engineering Patterns of Changes in the Parameters of Functioning of Intercity Passenger Transportation System. International Journal of Intelligent Information Systems. 2019. Т. 7. №. 6. P. 48.
Dolya C. Math modeling of influence environment at the development of passenger transport systems // International scientific-practical conference / C. Dolya, O. Dolya. - 2016. - P. 292.
Olena, D., & Konstantin, D. (2022). Determination of Promising Directions for the Development of Geographic Information Systems in the Operation of Vehicles. Communications, 10(1), 1-4.
Доля, К. В., & Доля, О. Є. (2017). Щодо можливості практичної реалізації засобів розвитку маршрутних пасажирських транспортних систем. Молодий вчений, (1), 41-44.
Dolia V.K., Dolia K.V., Dolia O.E. Determining Parameters of Functioning of Passenger Transport Routes by Means of Computer Simulation of Processes. Science & Technique. 2021;20(6):514-521. (In Russ.) https://doi.org/10.21122/2227-1031-2021-20-6-514-521
Kostiantyn, D., & Olena, D. (2019). Generalization of 3 d city models to simplify similation of urban territories. р.273.
Доля, О. Є., & Доля, К. В. Визначення закономірностей змін параметрів системи перевезень. Комунальне господарство міст, (154), 138-142.
Dolia О. (2022). Analysis of the state of modern scientific thought on the use of vehicles in passenger transport. International Science Journal of Engineering & Agriculture, 1(1), 1–9.
Mamonov, K., Nesterenko, S., Radzinskaya, Y., & Dolia, O. City lands investment attractiveness calculation / Geodesy and Cartography. Vol. 68, No. 1, 2019, pp. 211–223. Accepted: 18 April 2019. DOI: https://doi.org/10.24425/gac.2019.126097
Доля, О. Є. Щодо прогнозування вірогідності реалізації інвестиційного проекту з закупівлі автомобільних транспортних засобів на маршрути загального користування [Текст] / О. Є. Доля // Вісник Донецької академії автомобільного транспорту. — 2011. — № 1. — С. 17–24.
Доля, О. Є., Давідіч, Ю. О. (2016). Щодо встановлення впливу стохастичних коливань об’ємів перевезень пасажирів на основні показники ефективності функціонування міського автобусного маршруту. Збірник наукових праць Українського державного університету залізничного транспорту, (160), 80-87.
Далека В.Х., Доля О.Є. Планування процесів управління вартістю проектів міських пасажирських перевезень // SR. 2015. №2 (13).
Доля, О. Є. (2012) Щодо прогнозування добового об’єму перевезень пасажирів на міських автобусних маршрутах. In: Транспортные проблемы крупнейших городов.
Dolia О. (2022). Analysis of the state of modern scientific opinion on the issue of organizing passenger transportation by various modes of transport. International Science Journal of Engineering & Agriculture, 1(2), 23–39.
Давідіч Ю. О. Вплив коливань об’ємів перевезених пасажирів у міському сполученні на показники дії маршрутів / Ю.О. Давідіч, О.Є. Доля // Технологический аудит и резервы производства. - 2016. - № 2(3). - С. 34-37.
Dolya K., Dolya O. Economic-mathematical modeling influence of environment at the development of systems passenger transport // Науковий вісник Херсонського державного університету. - 2016. - № 16. - С. 152-154.
Dolia О. (2022). Analysis of modern scientific approaches to calculating the number of passengers on air transport. International Science Journal of Engineering & Agriculture, 1(3), 247–272.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kostiantyn Dolia, Nataliia Kobrina
This work is licensed under a Creative Commons Attribution 4.0 International License.