The current state of the application of various types of energies in surgical practice

Authors

  • Oleksandr Romanenko Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute, Kiev, Ukraine https://orcid.org/0009-0005-7426-0635
  • Andrii Dubko Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute; Department of Biomedical Engineering National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kiev, Ukraine https://orcid.org/0000-0001-6070-3945
  • Nataliia Chvertko Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute, Kiev, Ukraine https://orcid.org/0000-0002-7559-7716
  • Evgen Matsas Department of Welding and Related Technologies in Medicine and Ecology E.O. Paton Electric Welding Institute, Kiev, Ukraine https://orcid.org/0009-0000-8550-3800

DOI:

https://doi.org/10.46299/j.isjea.20250404.01

Keywords:

surgery, energy, biological tissues, ultrasound, plasma, laser, high frequency

Abstract

The need to improve technologies and equipment for providing surgical care in modern conditions requires the introduction of new approaches. These approaches are based on the development and application of hybrid technologies that combine the advantages of several energies of different types used in surgical practice in each specific case. The object of research is energies that affect soft biological tissues during surgical interventions. The subject of research is hybrid surgical technologies; structural elements and physical parameters of devices operating on these technologies. The purpose of the work is to study existing world experience for the creation of domestic hybrid surgical technologies and equipment. To solve the scientific tasks set in the article, the following were used: analysis of scientific and technical literature and information materials from Internet databases; materials related to the theoretical foundations of electrodynamics and acoustics. A review of scientific publications was conducted, which presented information on the influence of various types of energies on biological tissues during surgical interventions, determining their advantages and disadvantages. It has been established that combining the advantages of individual energies used in surgery will allow the development of new hybrid technologies to solve complex existing problems that are not solved by traditional methods. It has been shown that hybrid technology that combines mechanical and electrical energy demonstrates significant potential in increasing the efficiency and safety of surgical interventions.

References

Lebedev, A., Dubko, A. (2020). Use of Electric Welding of Living Tissues in Surgery (review). Biomed Eng, 54, 73–78. doi: https://doi.org/10.1007/s10527-020-09977-3

Molotkovets, V., Medvediev, V., Korsak, A. et al. (2020). Restoration of the Integrity of a Transected Peripheral Nerve with the Use of an Electric Welding Technology. Neurophysiology, 52, 31–42. doi: https

Маринський, Г., Ткаченко, В., Бисько, В., Подпрятов, С., Подпрятов, С., Грабовський, С., Ткаченко, С. (2023). Високочастотне обладнання для зварювання живих тканин (Огляд). Автоматичне зварювання, 1, 29-37. doi: https://doi.org/10.37434/

Лебедєв, О., Дубко, А., Чвертко, Н. (2023). Основи комп’ютерного мультифізичного моделювання контактного зварювання живих тканин. Автоматичне зварювання, 5, 44-47. doi: https

Dubko, A., Yamnenko, I., Stepenko, S., Bondarenko, O. (2023). Bioimpedance Analysis of Biological Tissues for Their Welding. 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek). SECTION 4. ENGINEERING IN MEDICINE AND BIOLOGY, 1-7. doi:10.1109/KhPIWeek61412.2023.10312990

Tkachenko, S., Romanenko, O., Chvertko, N., Dubko, A.; Krivtsun, I., et al., (Ed.) (2025). Current state and prospects for development in welding of biological tissues. Welding and Related Technologies. CRC Press. Taylor & Francis Group, 143-146. doi: 10.1201/9781003518518-29

Smith, A., Tessmann, M., Kondo, Z., Kondo, W., Cabrera, R. (2018). Laparoscopic Surgical Devices: A Review of the Newest Energies and Instruments. International Journal of Medical Science and Health Research, Vol. 2, No. 06, 40 – 60. ISSN: 2581-3366

Law, K., Abbott, Jason., Lyons, S. (2014). Energy sources for gynecologic laparoscopic surgery: a review of the literature. Obstetrical & Gynecological Survey, 69, (12), 763-776. doi: 10.1097/OGX.0000000000000130

Белоус, А., Грищенко, В. (1994). Криобиология. К.: Наукова думка. 432.

Jansen, M., Van Hillegersberg, R., Schoots, I., et. al. (2010). Cryoablation induces greater infl ammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery. Vol. 147, № 5. 686–95. doi: https:// doi.org/10.1016/j.surg.2009.10.053

Чиж, Н. (2017). Эндоскопическая криохирургия. Проблемы криобиологии и криомедицины. Т. 27, № 1. 3–18. doi: https://doi.org/10.15407/cryo27.01.003

Чиж, Н. (2018). Криогенная техника в малоинвазивной хирургии. Проблеми кріобіології і кріомедицини. Т. 28, № 3. 200–211. doi: https://doi.org/10.15407/cryo28.03.200

Amal, A., Rashed, Z., Sameh, E. (2024). Radiative flow of temperature-dependent viscosity power-law nanofluids over a truncated cone saturated heat generating, porous media: Impacts of Arrhenius energy. Case Studies in Thermal Engineering, vol. 53, 103874. ISSN 2214-157X

Cheng, Y., Shen, Y., Gao, Y.,Wen, Y., Lv, Z.,Wang, E.,Wang, M.,Zhang, S.,Bo, Y.,Peng, Q. (2024). Theoretical and Experimental Analysis of the Effect of Vaporization Heat on the Interaction between Laser and Biological Tissue. Appl. Sci. 14, 4333, 1-13. doi: https://doi.org/10.3390/app14104333

Gardner, C., Jacques, S., Welch, A. (1996). Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers Surg. Med., vol. 18, 129–138.

Smith, R., Pasic R. (2008). The role of vessel sealing technologies in laparoscopic surgery. Surg Technol Int, Vol. 17, 208—212.

Lee, S., Park, K. (1999). Ultrasonic energy in endoscopic surgery. Yonsei Med J, Vol. 40 (6), 545—549.

Kadesky K., Schopf, B., Magee, J., Blair, G. (1997). Proximity injury by the ultrasonically activated scalpel during dissection . J Pediatr Surg, Vol. 32 (6), 878—879.

Kim, J., Hattori, R., Yamamoto, T., Yoshino, Y., Gotoh, M. (2010). How can we safely use ultrasonic laparoscopic coagulating shears? Int J Urol.,Vol. 17, 377—381.

Emam, T., Cuschieri, A. (2003). How safe is high-power ultrasonic dissection? // Ann Surg., Vol. 237 (2), 186—191.

Kinoshita, T., Kanehira, E., Omura, K. (1999). Basic experiments to evaluate the safety of a fine caliber ultrasonically activated device. JSES, Vol. 4, 473—478.

Elattar, O., Naga A., Maged, H. (2005). Laparoscopic appendectomy by ultrasonically activated scalpel: a prospective study. Egypt J Surg, Vol. 24 (3), 164—167.

Lin, P., Thyer, A., Soules, M. (2004). Intraoperative ultrasound during a laparoscopic myomectomy. Fertil Steril, Vol. 81 (6), 1671—1674.

Tanaka, T., Ueda, K., Hayashi, M., Hamano, K. (2009). Clinical application of an ultrasonic scalpel to divide pulmonary vessels based on laboratory evidence. Interact Cardiovasc Thorac Surg., Vol. 8 (6), 615—618.

Hosny, A., Elmahrouky, A., Balboula, A., Yousry, M., Sharkawy M. (2020). Feasibility of vessel sealing devices in surgical excision of vascularmal formationse novel approach. International Journal of Surgery Open,23, 8-16. doi: https://doi.org/10.1016/j.ijso.2020.01.0052405-8572

Іванько, О., Скиба, В., Хассан, А.,, Гоман, А., Лисиця, В. (2020). Порівняльна ефективність ультразвукового скальпеля та монополярної коагуляції при гемороїдектомії. Укр. мед. часопис, 6 (140), Т. 2, XI/XII, 1-4. doi: 10.32471/umj.1680-3051.140.195128

Ремизов, А. (2013). Медицинская и биологическая физика. М.: ГЭОТАР-Медиа. 648.

Akyuz, O.,. Bodakci, M., Tefekli, A. (2019). Thermal cautery-assisted circumcision and principles of its use to decrease complication rates. Journal of Pediatric Urology, Volume 15, Issue 2, 186.e1-186.e8. doi: https://doi.org/10.1016/j.jpurol.2019.01.003

Valibeknejad, M., Pishvaie, M., Raoof, A. (2024). Model predictive controller of voltage dosage for safe and effective electrochemical treatment of tumors. Electrochimica Acta 483, 144044, 1-9. doi: https://doi.org/10.1016/j.electacta.2024.144044

César, A., Jamshid, K.(2022). Electrochemical Treatment of Tumours: Brief Considerations. Am J Biomed Sci & Res, 17(1), 91-97. AJBSR.MS.ID.002316. doi: 10.34297/AJBSR.2022.17.002317

Nabi, Z., Lopez, P., Reddy, D. (2024). Electrosurgery in Gastrointestinal Endoscopy: Bench to Bedside. Journal of Digestive Endoscopy, Vol. 15 No. 2/2024. 116–124. doi: https://doi.org/ 10.1055/s-0044-1787128

Box, G., Lee, H., Abraham, J., Deane, L., Elchico, E., Abdelshehid, C. et al. (2009). Comparative study of in vivo lymphatic sealing capability of the porcine thoracic duct using laparoscopic dissection devices. J Urol., Vol. 181 (1), 387—391.

Montero, P., Robinson, T., Weaver, J., Stiegmann, G. (2009). Insulation failure in laparoscopic instruments. Surg Endosc., Vol. 24 (2), 462—465.

Vancaillie, T. (1998). Active electrode monitoring. Surg Endosc., Vol. 12 (8), 1009—1012.

Valleylab. (1999). Basics of bipolar electrosurgery. Clin Inform Hotline News.

Kim, F., Chammas, M., Gewehr, E., Morihisa, M., Caldas, F., Hayacibara, E. et al. (2008). Temperature safety profile of laparoscopic devices: harmonic ACE (ACE), Ligasure V(LV), and plasma trisector (PT). Surg Endosc., Vol. 22 (6), 1464—1469.

Mucciardi, G., Magno, C., Inferrera, A., Lugnani, F. (2016).Cryosurgery and Irreversible Electroporation: The State of the Art, Advantages, and Limitations. Handbook of Electroporation. Springer. Cham. doi: https://doi.org/10.1007/978-3-319-26779-1_110-1

Weaver, J., Chizmadzhev, J. (1996). Theory of electroporation: a review. Bioelectrochem Bioenergy, Vol. 41, № 2. 135–160. doi: https://doi.org/10.1016/S0302-4598(96)05062-3

Edd, J., Horowits, L., Davalos, R., Mir, L., Rubinsky, B. (2006). In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE transactions on bio-medical engineering, Vol. 53, № 7. 1409–1415. doi: https://doi. org/10.1109/TBME.2006.87374

Marsanic, P., Mellan, A., Sottile, A., De Simone, M. (2017). Irreversible electroporation as treatment of locally advanced and as margin accentuation in borderline resectable pancreatic adenocarcinoma. Med. Biol. Eng. Comput,. 55 (7): 1123–1127. doi: 10.1007/s11517-016-1603-9

Martin, R., Kwon, D., Chalikonda, S., Sellers, M., Kotz, E., Scoggins, C., McMasters, K., Watkins, K. (2015). Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann. Surg. 262 (3), 486–494. doi: 10.1097/SLA.0000000000001441

Martin, R., McFarland, K., Ellis, S., Velanovich, V. (2012). Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J. Am. Coll. Surg. 215 (3): 361–369.

Дубко, А., Чвертко, Н. Оцінка стану наукових досліджень з питань впровадження технології електропорації в хірургічну практику. International Science Journal of Engineering & Agriculture. Vol. 3, No. 2, 21-39. doi: 10.46299/j.isjea.20240302.02

Zhu, J., Zhang, Y., Zhang, A. Et. al. (2016). Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Scientific reports, Vol. 6, 1–12. doi: https:// doi.org/10.1038/srep27136

Самадов, В., Кузьменко, А., Захарычев, В. (2012). Оценка противоопухолевого эффекта комбинированного применения криоабляции и микроволновой гипертермии в эксперименте. Проблемы криобиологии, Vol. 22, № 3, 484–490.

Самедов, В., Захарычев, В., Мосин, О. (2013). Криохирургия с локальной СВЧ-гипертермией в лечении больных раком слизистой оболочки полости рта. Клінічна онкологія, Т. 10, № 2, 98–100.

Zenker, M. (2008). Argon plasma coagulation. Review Article. GMS Krankenhaushygiene Interdisziplinär, Vol. 3(1), 1-5. ISSN 1863-5245.

Zhong, Q., Liu, Z., Yuan, Z., Ma, T., Huang, X., Wang, H., Chen, D., Wang, J., Wang, L. (2019). Efficacy and complications of argon plasma coagulation for hemorrhagic chronic radiation proctitis. World J Gastroenterol, 25(13): 1618-1627. doi: 10.3748/wjg.v25.i13.1618]

Glowka, T., Standop, J., Paschenda, P., Czaplik, M., Kalff, J. and Tolba, R. (2017). Argon and helium plasmacoagulation of porcineliver tissue. Journal of International Medical Research, Vol. 45(5), 1505–1517. doi: 10.1177/0300060517706576

Reich, H., Roberts, A., Moroney, R., Taylor, James W., Pessa, J. (1982). Carbon dioxide laser laparoscopy: initial experience in experimental animals and humans. Obstetrics & Gynecology, Vol. 59 №6, 770-774.

Williams, M., Casher, J., Russo, M., Hong, K., Argenziano, M., Oz, M. (2006). Laser energy source in surgical atrial fibrillation ablation: preclinical experience. Ann Thorac Surg., Vol. 82 (6), 2260—2264.

Kelly, M., Mathews, H., Weir, P. (1997). Carbon dioxide embolism during laser endometrial ablation. Anaesthesia, Vol. 52 (1), 65—67.

Wishnow, K., Johnson, D., Cromeens, D., Ro, J. (1989). Laser photoirradiation of the canine ureteral orifice: comparison between contact and noncontact techniques. Lasers Surg Med., Vol. 9 (5), 485—489.

Shumalinsky, D., Lobik, L., Cytron, S., Halpern, M., Vasilyev, T., Ravid, A. et al. (2004). Laparoscopic laser soldering for repair of ureteropelvic junction obstruction in the porcine model.J Endourol, Vol. 18 (2), 177—181.

Колнаузов, І., Богомолов, М., Грибан, О. (2024). Перспективи використання лазерів в медичній практиці. Biomedical Engineering and Technology, 14 (2), 26-35. doi: https://doi.org/10.20535/2617-8974.2024.14

Розуменко, В., Розуменко, А. (2022). Сучасні технології хірургічного лікування злоякісних гліальних пухлин головного мозку. Ukrainian Neurosurgical Journal, Vol. 28, N2, 22-30. doi: 10.25305/unj.256530

Ковальский, О., Данилевич, В. (2013). Радіологія. Променева терапія. Променева діагностика. Вінниця: Нова Книга, 512 .

Манічева, Н. (2023). Критерії вибору та аналіз переваг і недоліків обладнання для стереотаксичної радіохірургії. Scientific Collection «InterConf+», (35(163), 224–232. doi: https://doi.org/10.51582/interconf.19-20.07.2023.022

Kruchok, I., Chuvashova, O. (2020). Efficacy and safety of linac stereotactic radiosurgery in patients with skull-base meningiomas. Ukrainian scientific medical youth journal, issue 4 (119)48-55. doi: 10.32345/USMYJ.4(119).2020.48-55

Щестюк, О., Щербак, Ю., Запальский, В., Клименко, М., Нетюхайло, Л. (2021). Медична кондиціонуюча та кріогенна техніка, Миколаїв: Вид-во ЧНУ ім. Петра Могили, 212.

Наер, В., Роженцев, А., Али, Х. (2013). Рабочие вещества с фазовым переходом «жидкость - твердое тело - жидкость» для хирургических аппаратов. Холодильна техніка та технологія, №6 (146), 16-23.

Молотов, А., Заболотный, Д., Лукач, Э. (1994). Комбинированное применение лейкинферона и криоультразвуковой терапии у больных со злокачественными опухолями ЛОР-органов. Журнал ушных, носовых и горловых болезней, № 4, 64–66.

Запорожан, В., Хаит, О., Рикберг, А., Бакай, Є. (1983). Криоультразвуковая терапия доброкачественных заболеваний шейки матки. Криобиология и криомедицина, Вып. 12, 64–69.

Miehlke, A., Chilla, R., Vollrath, M. (1979). Cryosurgery and laser surgery in the treatment of malignant and benign laryngeal processes, Vol. 41, № 5, 273–287. doi: https://doi.org/10.1159/000275446

Ierace, M., Canfield, M., Peters‐Kennedy, J., Kane, C. (2017). Combined carbon dioxide laser and cryosurgical ablation of rostral nasal septum squamous cell carcinoma in 10 dogs. Veterinary dermatology, Vol. 28, 435–436. doi: https://doi. org/10.1111/vde.12683

Vergnon, J., Schmitt, T., Alamartine, E., Barthelemy, J., Fournel P., Emonot A. (1992). Initial combined cryotherapy and irradiation for unresectable non-small cell lung cancer. Chest, Vol. 102, 1436–1440. doi: https://doi.org/10.1378/chest.102.5.1436

Slanina, S., Bazhutova, G., Pustynskiy, I., Lubaev, V., Yagubov, A. (2004). Survival of the cultured human tumor cells exposed to cryo-radiation treatment. 7-th International Conference of Anticancer Research, 3608.

Шафранов, В., Тен, Ю., Резницкий, В., Циганов, Д., Кожевников, В. (1988). Комбинированное микроволновое и криовоздействие на биоткани в эксперименте и клинике. Криобиология, № 4, 27–32.

Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M. (2007). Hyperthermia – description of a method and a review of clinical applications. Reports of practical oncology and radiotherapy, Vol. 12, № 5, 267–275. doi: https://doi.org/10.1016/S1507-1367(10)60065-X

Nilsson, E., Von Euler, H., Berendson, J. et. al. (2000). Electrochemical treatment of tumours. Bioelectrochemistry, Vol. 51, № 1, 1–11. doi: https://doi.org/10.1016/ S0302-4598(99)00073-2

Lugnani, F., Macchioro, M., Rubinsky, B. (2017). Cryoelectrolysis – electrolytic processes in a frozen physiological saline medium. Peer J, 1–18. doi: https://doi.org/10.7717/peerj.2810

Lugnani, F., Zanconati, F., Marcuzzo, T., et. al. (2015). A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus. PLoS ONE, 10(12):1–16. doi: https://doi. org/10.1371/journal.pone.0145133

Obonna, G., Mishra, R. (2014). Differences between Thunderbeat, LigaSure and Harmonic Scalpel Energy System in Minimally Invasive Surgery. World Journal of Laparoscopic Surgery, 7(1), 41-44. doi: 10.5005/jp-journals-10033-1215

Published

2025-08-01

How to Cite

Romanenko, O., Dubko, A., Chvertko, N., & Matsas, E. (2025). The current state of the application of various types of energies in surgical practice. International Science Journal of Engineering & Agriculture, 4(4), 1–18. https://doi.org/10.46299/j.isjea.20250404.01

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.